Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 39(2): 371-390, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35412187

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Etanol/toxicidade , Peixe-Zebra , Benzo(a)pireno/toxicidade , Larva , Transcriptoma , Mitocôndrias , Heme
2.
Free Radic Biol Med ; 160: 246-262, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32791186

RESUMO

A growing body of evidences indicate the major role of extracellular vesicles (EVs) as players of cell communication in the pathogenesis of liver diseases. EVs are membrane-enclosed vesicles released by cells into the extracellular environment. Oxidative stress is also a key component of liver disease pathogenesis, but no role for hepatocyte-derived EVs has yet been described in the development of this process. Recently, some polycyclic aromatic hydrocarbons (PAHs), widespread environmental contaminants, were demonstrated to induce EV release from hepatocytes. They are also well-known to trigger oxidative stress leading to cell death. Therefore, the aim of this work was to investigate the involvement of EVs derived from PAHs-treated hepatocytes (PAH-EVs) in possible oxidative damages of healthy recipient hepatocytes, using both WIF-B9 and primary rat hepatocytes. We first showed that the release of EVs from PAHs -treated hepatocytes depended on oxidative stress. PAH-EVs were enriched in proteins related to oxidative stress such as NADPH oxidase and ferritin. They were also demonstrated to contain more iron. PAH-EVs could then induce oxidative stress in recipient hepatocytes, thereby leading to apoptosis. Mitochondria and lysosomes of recipient hepatocytes exhibited significant structural alterations. All those damages were dependent on internalization of EVs that reached lysosomes with their cargoes. Lysosomes thus appeared as critical organelles for EVs to induce apoptosis. In addition, pro-oxidant components of PAH-EVs, e.g. NADPH oxidase and iron, were revealed to be necessary for this cell death.


Assuntos
Vesículas Extracelulares , Hidrocarbonetos Policíclicos Aromáticos , Animais , Vesículas Extracelulares/metabolismo , Hepatócitos , Ferro/metabolismo , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ratos
3.
Mar Drugs ; 18(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861403

RESUMO

Marine microalgae are known to be a source of bioactive molecules of interest to human health, such as n-3 polyunsaturated fatty acids (n-3 PUFAs) and carotenoids. The fact that some of these natural compounds are known to exhibit anti-inflammatory, antioxidant, anti-proliferative, and apoptosis-inducing effects, demonstrates their potential use in preventing cancers and cardiovascular diseases (CVDs). Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is an ubiquitous environmental pollutant known to contribute to the development or aggravation of human diseases, such as cancer, CVDs, and immune dysfunction. Most of these deleterious effects are related to the activation of the polycyclic aromatic hydrocarbon receptor (AhR). In this context, two ethanolic microalgal extracts with concentrations of 0.1 to 5 µg/mL are tested, Ostreoccoccus tauri (OT) and Phaeodactylum tricornutum (PT), in order to evaluate and compare their potential effects towards B[a]P-induced toxicity in endothelial HMEC-1 cells. Our results indicate that the OT extract can influence the toxicity of B[a]P. Indeed, apoptosis and the production of extracellular vesicles were decreased, likely through the reduction of the expression of CYP1A1, a B[a]P bioactivation enzyme. Furthermore, the B[a]P-induced expression of the inflammatory cytokines IL-8 and IL1-ß was reduced. The PT extract only inhibited the expression of the B[a]P-induced cytokine IL-8 expression. The OT extract therefore seems to be a good candidate for counteracting the B[a]P toxicity.


Assuntos
Benzo(a)pireno/toxicidade , Produtos Biológicos/farmacologia , Microalgas/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocinas/efeitos dos fármacos , Células Endoteliais , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Humanos , Oceanos e Mares
4.
Environ Pollut ; 255(Pt 1): 113171, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31539851

RESUMO

Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects. Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers. To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs. These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.


Assuntos
Células Endoteliais/metabolismo , Poluentes Ambientais/toxicidade , Vesículas Extracelulares/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Urina/química , Animais , Biomarcadores/metabolismo , Líquidos Corporais/química , Linhagem Celular , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Exossomos , Feminino , Humanos , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo
5.
Biochimie ; 163: 171-183, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31228544

RESUMO

Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.


Assuntos
Benzo(a)pireno/toxicidade , Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Neoplasias/metabolismo , Prótons , Animais , Benzo(a)pireno/metabolismo , Carcinógenos/metabolismo , Exposição Ambiental , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia
6.
Free Radic Biol Med ; 129: 323-337, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268890

RESUMO

We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.


Assuntos
Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/genética , Etanol/toxicidade , Ácidos Graxos/farmacologia , Hepatócitos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzoatos/farmacologia , Linhagem Celular Tumoral , Quimera , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Imidazóis/farmacologia , Metaloporfirinas/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Necrose/induzido quimicamente , Necrose/genética , Necrose/metabolismo , Óxido Nítrico/agonistas , Pirazóis/farmacologia , Ratos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Superóxidos/agonistas , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
7.
Sci Rep ; 8(1): 5963, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654281

RESUMO

Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.


Assuntos
Benzo(a)pireno/efeitos adversos , Etanol/efeitos adversos , Fígado Gorduroso/patologia , Fígado/patologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Poluentes Ambientais/efeitos adversos , Fígado Gorduroso/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Larva/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Ratos , Peixe-Zebra
8.
Sci Rep ; 7(1): 195, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298645

RESUMO

Most tumors undergo metabolic reprogramming towards glycolysis, the so-called Warburg effect, to support growth and survival. Overexpression of IF1, the physiological inhibitor of the F0F1ATPase, has been related to this phenomenon and appears to be a relevant marker in cancer. Environmental contributions to cancer development are now widely accepted but little is known about the underlying intracellular mechanisms. Among the environmental pollutants humans are commonly exposed to, benzo[a]pyrene (B[a]P), the prototype molecule of polycyclic aromatic hydrocarbons (PAHs), is a well-known human carcinogen. Besides apoptotic signals, B[a]P can also induce survival signals in liver cells, both likely involved in cancer promotion. Our previous works showed that B[a]P elicited a Warburg-like effect, thus favoring cell survival. The present study aimed at further elucidating the molecular mechanisms involved in the B[a]P-induced metabolic reprogramming, by testing the possible involvement of IF1. We presently demonstrate, both in vitro and in vivo, that PAHs, especially B[a]P, strongly increase IF1 expression. Such an increase, which might rely on ß2-adrenergic receptor activation, notably participates to the B[a]P-induced glycolytic shift and cell survival in liver cells. By identifying IF1 as a target of PAHs, this study provides new insights about how environmental factors may contribute to related carcinogenesis.


Assuntos
Carcinógenos Ambientais/toxicidade , Carcinoma Hepatocelular/genética , Glicólise , Neoplasias Hepáticas/genética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Proteínas/genética , Animais , Apoptose , Benzo(a)pireno/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Sobrevivência Celular , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Experimentais , Proteínas/metabolismo , Ratos , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima , Proteína Inibidora de ATPase
9.
Semin Cancer Biol ; 43: 49-65, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28088583

RESUMO

According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.


Assuntos
Carcinogênese , Carcinógenos/toxicidade , Exposição Ambiental , Homeostase , Concentração de Íons de Hidrogênio , Humanos
10.
Sci Rep ; 6: 30776, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488617

RESUMO

Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na(+)/H(+) exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration).


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos Ambientais/toxicidade , Reprogramação Celular/efeitos dos fármacos , Fígado/citologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Ácido Láctico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos
11.
Toxicol In Vitro ; 29(7): 1597-608, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26086121

RESUMO

Benzo[a]pyrene (B[a]P), the prototype molecule of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, which has led the International Agency for Research on Cancer to recognize it as a human carcinogen. Besides the well-known apoptotic signals triggered by B[a]P, survival signals have also been suggested to occur, both signals likely involved in cancer promotion. Our previous work showed that B[a]P induced an hyperpolarization of mitochondrial membrane potential (ΔΨm) in rat hepatic epithelial F258 cells. Elevated ΔΨm plays a role in tumor development and progression, and nitric oxide (NO) has been suggested to be responsible for increases in ΔΨm. The present study therefore aimed at evaluating the impact of B[a]P on NO level in F258 cells, and at testing the putative role for NO as a survival signal, notably in link with ΔΨm. Our data demonstrated that B[a]P exposure resulted in an NO production which was dependent upon the activation of the inducible NO synthase. This enzyme activation involved AhR and possibly p53 activation. Preventing NO production not only increased B[a]P-induced cell death but also blocked mitochondrial hyperpolarization. This therefore points to a role for NO as a survival signal upon B[a]P exposure, possibly targeting ΔΨm.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Óxido Nítrico/metabolismo , Animais , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
Free Radic Biol Med ; 72: 11-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24681337

RESUMO

Several epidemiologic studies have shown an interactive effect of heavy smoking and heavy alcohol drinking on the development of hepatocellular carcinoma. It has also been recently described that chronic hepatocyte death can trigger excessive compensatory proliferation resulting later in the formation of tumors in mouse liver. As we previously demonstrated that both benzo[a]pyrene (B[a]P), an environmental agent found in cigarette smoke, and ethanol possess similar targets, especially oxidative stress, to trigger death of liver cells, we decided to study here the cellular and molecular mechanisms of the effects of B[a]P/ethanol coexposure on cell death. After an 18-h incubation with 100nM B[a]P, primary rat hepatocytes were supplemented with 50mM ethanol for 5 or 8h. B[a]P/ethanol coexposure led to a greater apoptotic cell death that could be linked to an increase in lipid peroxidation. Plasma membrane remodeling, as depicted by membrane fluidity elevation and physicochemical alterations in lipid rafts, appeared to play a key role, because both toxicants acted with specific complementary effects. Membrane remodeling was shown to induce an accumulation of lysosomes leading to an important increase in low-molecular-weight iron cellular content. Finally, ethanol metabolism, but not that of B[a]P, by providing reactive oxygen species, induced the ultimate toxic process. Indeed, in lysosomes, ethanol promoted the Fenton reaction, lipid peroxidation, and membrane permeabilization, thereby triggering cell death. To conclude, B[a]P exposure, by depleting hepatocyte membrane cholesterol content, would constitute a favorable ground for a later toxic insult such as ethanol intoxication. Membrane stabilization of both plasma membrane and lysosomes might be a potential target for further investigation considering cytoprotective strategies.


Assuntos
Benzo(a)pireno/toxicidade , Membrana Celular/efeitos dos fármacos , Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinógenos/toxicidade , Depressores do Sistema Nervoso Central/toxicidade , Hepatócitos/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley
13.
Chem Biol Interact ; 207: 41-51, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24246761

RESUMO

Plasma membrane is an early target of polycyclic aromatic hydrocarbons (PAH). We previously showed that the PAH prototype, benzo[a]pyrene (B[a]P), triggers apoptosis via DNA damage-induced p53 activation (genotoxic pathway) and via remodeling of the membrane cholesterol-rich microdomains called lipid rafts, leading to changes in pH homeostasis (non-genotoxic pathway). As omega-3 (n-3) fatty acids can affect membrane composition and function or hamper in vivo PAH genotoxicity, we hypothesized that addition of physiologically relevant levels of polyunsaturated n-3 fatty acids (PUFAs) might interfere with B[a]P-induced toxicity. The effects of two major PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were tested on B[a]P cytotoxicity in the liver epithelial cell line F258. Both PUFAs reduced B[a]P-induced apoptosis. Surprisingly, pre-treatment with DHA increased the formation of reactive B[a]P metabolites, resulting in higher levels of B[a]P-DNA adducts. EPA had no apparent effect on B[a]P metabolism or related DNA damage. EPA and DHA prevented B[a]P-induced apoptotic alkalinization by affecting Na(+)/H(+) exchanger 1 activity. Thus, the inhibitory effects of omega-3 fatty acids on B[a]P-induced apoptosis involve a non-genotoxic pathway associated with plasma membrane remodeling. Our results suggest that dietary omega-3 fatty acids may have marked effects on the biological consequences of PAH exposure.


Assuntos
Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Benzo(a)pireno , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dano ao DNA , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipídeos/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Ratos , Trocador 1 de Sódio-Hidrogênio , Proteína Supressora de Tumor p53/metabolismo
14.
Food Chem Toxicol ; 60: 286-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907024

RESUMO

Previously, we demonstrated that eicosapentaenoic acid enhanced ethanol-induced oxidative stress and cell death in primary rat hepatocytes via an increase in membrane fluidity and lipid raft clustering. In this context, another n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), was tested with a special emphasis on physical and chemical alteration of lipid rafts. Pretreatment of hepatocytes with DHA reduced significantly ethanol-induced oxidative stress and cell death. DHA protection could be related to an alteration of lipid rafts. Indeed, rafts exhibited a marked increase in membrane fluidity and packing defects leading to the exclusion of a raft protein marker, flotillin. Furthermore, DHA strongly inhibited disulfide bridge formation, even in control cells, thus suggesting a disruption of protein-protein interactions inside lipid rafts. This particular spatial organization of lipid rafts due to DHA subsequently prevented the ethanol-induced lipid raft clustering. Such a prevention was then responsible for the inhibition of phospholipase C-γ translocation into rafts, and consequently of both lysosome accumulation and elevation in cellular low-molecular-weight iron content, a prooxidant factor. In total, the present study suggests that DHA supplementation could represent a new preventive approach for patients with alcoholic liver disease based upon modulation of the membrane structures.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
15.
Toxicol In Vitro ; 26(1): 94-101, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22100782

RESUMO

The early apoptotic events induced by environmental pollutants with carcinogenic properties are poorly understood. Here, we focus on the early cytotoxic effects of benzo[a]pyrene (B[a]P). In F258 rat hepatic epithelial cells, B[a]P induces intrinsic apoptosis via a mitochondrial dysfunction characterized by the release of hexokinase II (HKII) from the mitochondria. Cancer cells often have an anomalous cell energy metabolism; since HKII dysfunction regulates B[a]P-induced apoptosis in F258 cells, but may also alter cell energy metabolism, HKII release from the mitochondria may represent an important B[a]P-related carcinogenic issue. Thus in the present study, we aimed at deciphering the mechanisms underlying HKII dysfunction upon B[a]P exposure. We show that while glycogen synthase kinase 3 beta (GSK3ß) regulated the expression of HKII at the transcriptional level, glycogen synthase kinase 3 alpha (GSK3α) was involved in B[a]P-induced apoptosis via a decrease in c-Myc expression. The reduced level of c-Myc caused the relocation of HKII from the mitochondria to the cytosol, thereby being involved in the formation of reactive oxygen species and apoptosis. In conclusion, we show that the couple GSK3α/c-Myc plays a key role in B[a]P-induced early apoptotic cell signaling via HKII dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Poluentes Ambientais/toxicidade , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta , Hexoquinase/metabolismo , Ratos
16.
Recent Pat Anticancer Drug Discov ; 6(3): 347-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21756246

RESUMO

In the last decade, a lot of patents have been filled regarding molecular biology and functions of cellular membranes. The membrane bilayer model has evolved from a static, passive, homogeneous barrier to a highly dynamic, asymmetric, heterogeneous structure composed of distinct domains. Changes in membrane fluidity and composition of microdomains have been proven to be involved in the regulation of many important physiological signaling pathways. Recently, several xenobiotics, including various drugs and environmental pollutants, have been reported to change plasma membrane characteristics, thereby altering cell physiology. Interestingly, it has been suggested that a cross talk between chemical-induced cellular membrane effects and DNA damages may be important for the final mutation outcome of genotoxic chemicals. Thus, effects on plasma membrane remodeling may give additional mechanistic explanations to how certain chemicals exert their carcinogenic effect. With respect to such effects, recent patents suggest to focus on plasma membrane and its components like caveolin-1 for cancer screening and chemotherapy. Here, we review the effects of environmental toxicants on cellular plasma membrane structure and function, and further describe possible implication for health and disease.


Assuntos
Carcinógenos , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/patologia , Fluidez de Membrana/fisiologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/fisiologia , Membrana Celular/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Fluidez de Membrana/efeitos dos fármacos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
17.
Nucl Med Biol ; 37(7): 777-84, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20870152

RESUMO

INTRODUCTION: Lipiodol is used as a vector for chemoembolization or internal radiotherapy in unresectable hepatocellular carcinomas (HCCs). The aim of this study is to improve the tumoral uptake of Lipiodol by modulating membrane fluidizing agents to optimize the effectiveness of Lipiodol vectorized therapy. METHODS: The effect of dexamethasone and tamoxifen on membrane fluidity was studied in vitro by electron paramagnetic resonance applied to rat hepatocarcinoma cell line N1S1. The tumoral uptake of Lipiodol was studied in vivo on rats with HCC, which had been previously treated by dexamethasone and/or tamoxifen, after intra-arterial administration of (99m)Tc-SSS-Lipiodol. RESULTS: The two molecules studied here exhibit a fluidizing effect in vitro which appears dependent on time and dose, with a maximum fluidity obtained after 1 hr at concentrations of 20 µM for dexamethasone and 200 nM for tamoxifen. In vivo, while the use of dexamethasone or tamoxifen alone tends to lead to increased tumoral uptake of Lipiodol, this effect does not reach levels of significance. On the other hand, there is a significant increase in the tumoral uptake of (99m)Tc-SSS-Lipiodol in rats pretreated by both dexamethasone and tamoxifen, with a tumoral uptake (expressed in % of injected activity per g of tumor) of 13.57 ± 3.65% after treatment, as against 9.45 ± 4.44% without treatment (P<.05). CONCLUSIONS: Dexamethasone and tamoxifen fluidify the N1S1 cells membrane, leading to an increase in the tumoral uptake of Lipiodol. These drugs could be combined with chemo-Lipiodol-embolization or radiolabeled Lipiodol, with a view to improving the effectiveness of HCCs therapy.


Assuntos
Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/metabolismo , Dexametasona/farmacologia , Óleo Etiodado/farmacocinética , Neoplasias Hepáticas/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Tamoxifeno/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Espectroscopia de Ressonância de Spin Eletrônica , Injeções Intra-Arteriais , Neoplasias Hepáticas/tratamento farmacológico , Ratos , Distribuição Tecidual , Células Tumorais Cultivadas
18.
Eur J Cancer ; 46(8): 1445-55, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20202822

RESUMO

In human colon cancer cells, cisplatin-induced apoptosis involves the Fas death receptor pathway independent of Fas ligand. The present study explores the role of ezrin and actin cytoskeleton in relation with Fas receptor in this cell death pathway. In response to cisplatin treatment, a rapid and transient actin reorganisation is observed at the cell membrane by fluorescence microscopy after Phalloidin-FITC staining. This event is dependent on the membrane fluidification studied by electron paramagnetic resonance and necessary for apoptosis induction. Moreover, early after the onset of cisplatin treatment, ezrin co-localised with Fas at the cell membrane was visualised by membrane microscopy and was redistributed with Fas, FADD and procaspase-8 into membrane lipid rafts as shown on Western blots. In fact, cisplatin exposure results in an early small GTPase RhoA activation demonstrated by RhoA-GTP pull down, Rho kinase (ROCK)-dependent ezrin phosphorylation and actin microfilaments remodelling. Pretreatment with latrunculin A, an inhibitor of actin polymerisation, or specific extinction of ezrin or ROCK by RNA interference prevents both cisplatin-induced actin reorganisation and apoptosis. Interestingly, specific extinction of Fas receptor by RNA interference abrogates cisplatin-induced ROCK-dependent ezrin phosphorylation, actin reorganisation and apoptosis suggesting that Fas is a key regulator of cisplatin-induced actin remodelling and is indispensable for apoptosis. Thus, these findings show for the first time that phosphorylation of ezrin by ROCK via Fas receptor is involved in the early steps of cisplatin-induced apoptosis.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias do Colo/metabolismo , Proteínas do Citoesqueleto/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Receptor fas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Proteínas do Citoesqueleto/metabolismo , Proteína Ligante Fas/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Receptor fas/metabolismo
19.
Toxicol Appl Pharmacol ; 243(1): 68-76, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19931295

RESUMO

Benzo[alpha]pyrene (B[alpha]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[alpha]P-induced apoptotic process. In this study, we report that B[alpha]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[alpha]P exposure. B[alpha]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[alpha]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[alpha]P-related H(2)O(2) formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[alpha]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[alpha]P altered the composition of plasma membrane microstructures through AhR and H(2)O(2) dependent-regulation of lipid biosynthesis. In F258 cells, the B[alpha]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.


Assuntos
Apoptose/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Membrana Celular/efeitos dos fármacos , Animais , Linhagem Celular , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Ácido Mevalônico , Ratos
20.
Toxicol Appl Pharmacol ; 228(2): 212-24, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18255115

RESUMO

While lysosomal disruption seems to be a late step of necrosis, a moderate lysosomal destabilization has been suggested to participate early in the apoptotic cascade. The origin of lysosomal dysfunction and its precise role in apoptosis or apoptosis-like process still needs to be clarified, especially upon carcinogen exposure. In this study, we focused on the implication of lysosomes in cell death induced by the prototype carcinogen benzo[a]pyrene (B[a]P; 50 nM) in rat hepatic epithelial F258 cells. We first demonstrated that B[a]P affected lysosomal morphology (increase in size) and pH (alkalinization), and that these changes were involved in caspase-3 activation and cell death. Subsequently, we showed that lysosomal modifications were partly dependent on mitochondrial dysfunction, and that lysosomes together with mitochondria participate in B[a]P-induced oxidative stress. Using two iron chelators (desferrioxamine and deferiprone) and siRNA targeting the lysosomal iron-binding protease lactoferrin, we further demonstrated that both lysosomal iron content and lactoferrin were required for caspase-3 activation and apoptosis-like cell death.


Assuntos
Apoptose/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Células Epiteliais/efeitos dos fármacos , Ferro/metabolismo , Lactoferrina/metabolismo , Lisossomos/efeitos dos fármacos , Laranja de Acridina/farmacologia , Animais , Benzo(a)pireno/química , Carcinógenos/química , Carcinógenos/toxicidade , Caspase 3/metabolismo , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Deferiprona , Desferroxamina/farmacologia , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Ferro/antagonistas & inibidores , Quelantes de Ferro/farmacologia , Lactoferrina/genética , Fígado/citologia , Lisossomos/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Piridonas/farmacologia , RNA Interferente Pequeno/genética , Ratos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA