RESUMO
Griffonia simplicifolia, a tropical plant endemic to West Africa, is highly regarded for its significant pharmacological potential. The objective of this study was to evaluate the metabolomic profile and to explore the antioxidant properties, antiproliferative activity, and antimicrobial potential of G. simplicifolia seed extracts obtained through either maceration, microwave-assisted extraction (MAE), or Soxhlet extraction using water, acetone, methanol and ethanol as solvents. Overall, methanol possessed superior total extraction efficiency. HPLC analyses confirmed the efficacy of acetone and ethanol as optimal solvents for the extraction of flavonoids and flavan-3-ols, whereas MAE exhibited enhanced effectiveness in extracting N-containing compounds, including 5-hydroxytryptophan (5-HTP). HPLC-MS analyses identified forty-three compounds, including thirty-four phenolic compounds and nine N-containing molecules. Isomyricitrin, taxifolin and a flavonol glucuronide were the main polyphenols, whereas 5-HTP was the main N-containing compound. Hydroalcoholic G. simplicifolia extracts showed the highest radical scavenging and metal-reducing antioxidant power, suggesting that most of the contribution to antioxidant activity depends on the more polar bioactive compounds. G. simplicifolia extracts showed dose-dependent antiproliferative activity against three distinct cancer cell lines (HeLa, HepG2, and MCF-7), with notable variations observed among both the different extracts and cell lines and divergent GI50 values, emphasizing substantial discrepancies in cell sensitivity to the various extracts. Furthermore, G. simplicifolia extracts revealed antibiotic activity against Staphylococcus aureus. Our results highlight the potential of G. simplicifolia phytochemicals in the development of functional foods, nutraceuticals, and dietary supplements.
RESUMO
Autophagy is an evolutionarily conserved process critical in maintaining cellular homeostasis. Recently, the anticancer potential of autophagy inducers, including phytochemicals, was suggested. Indicaxanthin is a betalain pigment found in prickly pear fruit with antiproliferative and pro-apoptotic activities in colorectal cancer cells associated with epigenetic changes in selected methylation-silenced oncosuppressor genes. Here, we demonstrate that indicaxanthin induces the up-regulation of the autophagic markers LC3-II and Beclin1, and increases autophagolysosome production in Caco-2 cells. Methylomic studies showed that the indicaxanthin-induced pro-autophagic activity was associated with epigenetic changes. In addition to acting as a hypermethylating agent at the genomic level, indicaxanthin also induced significant differential methylation in 39 out of 47 autophagy-related genes, particularly those involved in the late stages of autophagy. Furthermore, in silico molecular modelling studies suggested a direct interaction of indicaxanthin with Bcl-2, which, in turn, influenced the function of Beclin1, a key autophagy regulator. External effectors, including food components, may modulate the epigenetic signature of cancer cells. This study demonstrates, for the first time, the pro-autophagic potential of indicaxanthin in human colorectal cancer cells associated with epigenetic changes and contributes to outlining its potential healthy effect in the pathophysiology of the gastrointestinal tract.
Assuntos
Neoplasias Colorretais , Metilação de DNA , Humanos , Células CACO-2 , Proteína Beclina-1/genética , Epigênese Genética , Autofagia/genética , Neoplasias Colorretais/genéticaRESUMO
DNA G-rich sequences can organize in four-stranded structures called G-quadruplexes (G4s). These motifs are enriched in significant sites within the human genomes, including telomeres and promoters of cancer related genes. For instance, KIT proto-oncogene promoter, associated with diverse cancers, contains three adjacent G4 units, namely Kit2, SP, and Kit1. Aiming at finding new and selective G-quadruplex binders, we have synthesized and characterized five non-charged metal complexes of Pt(II), Pd(II), Ni(II), Cu(II) and Zn(II) of a chlorine substituted Salphen ligand. The crystal structure of the Pt(II) and Pd(II) complexes was determined by XRPD. FRET measurements indicated that Pt(II) and Pd(II) compounds stabilize Kit1 and Kit2 G4s but not SP, telomeric and double stranded DNA. Spectroscopic investigations (UV-Vis, circular dichroism and fluorescence) suggested the Cu(II) complex as the most G4-selective compound. Interestingly, docking simulations indicate that the synthesized compounds fit groove binding pockets of both Kit1 and Kit2 G4s. Moreover, they exhibited dose-dependent cytotoxic activity in MCF-7, HepG2 and HeLa cancer cells.
Assuntos
Antineoplásicos , Complexos de Coordenação , Quadruplex G , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Fenilenodiaminas/química , Dicroísmo Circular , TelômeroRESUMO
Plant biostimulants are formulations that are experiencing great success from the perspective of sustainable agriculture. In this work, we evaluated the effect derived from the application of a biostimulant based on algae and yeast extracts (Expando®) on the agronomic yield and nutraceutical profile of two different cultivars ("Sugar Time" and "West Rose") of Prunus persica (peach). Although, at the agronomic level, significant effects on production yields were not recorded, the biostimulant was able to reduce the ripening time, increase the fruit size, and make the number of harvestable fruits homogeneous. From a nutraceutical point of view, our determinations via spectrophotometric (UV/Vis) and chromatographic (HPLC-DAD-MS/MS) analysis showed that the biostimulant was able to boost the content of bioactive compounds in both the pulp (5.0 L/ha: +17%; 4.0 L/ha: +12%; 2.5 L/ha: +11%) and skin (4.0 L/ha: +38%; 2.5 L/ha: +15%). These changes seem to follow a dose-dependent effect, also producing attractive effects on the antioxidant properties of the fruits harvested from the treated trees. In conclusion, the biostimulant investigated in this work proved to be able to produce more marketable fruit in a shorter time, both from a pomological and a functional point of view.
Assuntos
Prunus persica , Alga Marinha , Antioxidantes/química , Prunus persica/química , Frutas/química , Espectrometria de Massas em Tandem , Compostos Fitoquímicos/análise , Extratos Vegetais/químicaRESUMO
In this study, the phytochemical profile and the antioxidative properties of Eugenia involucrata fruits were evaluated. Spectrophotometric assays indicated that these berries are a rich source of polyphenols with very high radical-scavenging and metal-reducing activities. High-performance liquid chromatography-Orbitrap analysis was able to carry out the annotation of 36 different compounds, mainly belonging to the flavonol, flavan-3-ol, and anthocyanin families. Antioxidant activity of the fruit extract was evaluated in a cell-based lipid peroxidation model. Obtained data showed that the extract, at very low concentration, was able to prevent oxidative damage in HepG2 cells exposed to oxidative stimuli. Moreover, the evaluation of the gene expression of the most important antioxidant enzymes suggested that the observed antioxidant protection in cells also involves an improvement in enzymatic antioxidant defenses. Finally, the collected data show that E. involucrata fruits are a good source of natural antioxidant molecules and provide evidence of their potential application in the nutraceutical field.
RESUMO
In the context of the contemporary research on sustainable development and circular economy, the quest for effective strategies aimed at revaluation of waste and by-products generated in industrial and agricultural production becomes important. In this work, an ethanolic extract from red raspberry (Rubus idaeus) seed waste (WRSP) was evaluated for its phytochemical composition and functional properties in term of antioxidative, antiproliferative, and antimicrobial activities. Chemical composition of the extract was determined by both HPLC-ESI-MS/MS and spectrophotometric methods. Phytochemical analysis revealed that flavan-3-ols and flavonols were the major phenolic compounds contained in WRSP. The extract demonstrated very high radical-scavenging (4.86 ± 0.06 µmol TE/DW) and antioxidant activity in a cell-based model (0.178 ± 0.03 mg DW/mL cell medium). The WRSP extract also exhibited antiproliferative activity against three different epithelial cancer cell lines (MCF-7, HepG2, and HeLa cells) in a dose-dependent manner. Finally, microbiological assays showed the absence of colonies of bacteria and microscopic fungi (yeasts and molds) and revealed that the WRSP extract has a large inhibition spectrum against spoilage and pathogenic bacteria, without inhibitory activity against pro-technological bacteria. In conclusion, the obtained results show that WRSP is a rich source of phytochemical compounds exerting interesting biological activities. For these reasons WRSP could find applications in the nutritional, nutraceutical, and pharmacological fields.
RESUMO
This study evaluated the phytochemical profile and antioxidative properties of the edible and non-edible portions of black sapote. The phytochemical analysis highlighted the presence of several bioactive compounds, differently distributed among peel, pulp and seeds. In particular, the peel resulted rich of flavan-3-ols and proanthocyanidins, whereas seeds contained high amount of organic acids, including ferulic, citric and sinapic acids. Concerning functional properties, both edible and non-edible portions showed a significant prevention of lipid peroxidation in a cell-based model. Moreover, the results suggested that the antioxidant protection involved both redox active properties and gene expression modulation. Concerning redox active properties, peel extracts showed an antioxidant activity 7/12-fold higher than the edible portion, while seed extracts were more active in increasing catalase gene expression. The obtained results confirmed that black sapote is a good source of antioxidant phytochemicals and its non-edible portions have a great potential in the production of functional foods and supplements.
Assuntos
Antioxidantes , Diospyros , Compostos Fitoquímicos , Extratos Vegetais , PolifenóisRESUMO
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
RESUMO
In this work, the food quality of four international (Campas, Chaffey, Fino de Jete and White) and three local (Daniela, Torre1 and Torre2) cultivars of Cherimoya (Annona cherimola Mill) was investigated. With this aim, pomological traits, sensorial attributes, physiochemical parameters (pH, total soluble content and total acidity), nutritional composition (macro- and micro-nutrients) and nutraceutical values (bioactive compounds, radical scavenging and antioxidant properties) were evaluated. Among the seven observed cultivars, Fino de Jete was identified as the best, not only for its commercial attributes such as pomological traits and physiochemical values, but also for its nutritional composition. On the other hand, Chaffey and Daniela were the cultivars with the highest content of polyphenols, proanthocyanidins, and with the strongest antioxidant capacity. Concerning the two local ecotypes, Torre1 and Torre2, they displayed a balanced nutritional profile that, if combined with their discrete nutraceutical, physicochemical and pomological values, may result in a reassessment of their commercial impact. In conclusion, our data provide interesting information about the pomological, nutritional, and nutraceutical properties of cherimoya fruits. Our results, in addition to promoting the commercial impact of local cultivars, may increase the use of individual cultivars in breeding programs.