Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Diagn ; 23(4): 375-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387698

RESUMO

DNA junctions (DNAJs) frequently impact clinically relevant genes in tumors and are important for diagnostic and therapeutic purposes. Although routinely screened through fluorescence in situ hybridization assays, such testing only allows the interrogation of single-gene regions or known fusion partners. Comprehensive assessment of DNAJs present across the entire genome can only be determined from whole-genome sequencing. Structural variance analysis from whole-genome paired-end sequencing data is, however, frequently restricted to copy number changes without DNAJ detection. Through optimized whole-genome sequencing and specialized bioinformatics algorithms, complete structural variance analysis is reported, including DNAJs, from formalin-fixed DNA. Selective library assembly from larger fragments (>500 bp) and economical sequencing depths (300 to 400 million reads) provide representative genomic coverage profiles and increased allelic coverage to levels compatible with DNAJ calling (40× to 60×). Although consistently fragmented, more recently formalin-fixed, specimens (<2 years' storage) revealed consistent populations of larger DNA fragments. Optimized bioinformatics efficiently detected >90% of DNAJs in two prostate tumors (approximately 60% tumor) previously analyzed by mate-pair sequencing on fresh frozen tissue, with evidence of at least one spanning-read in 99% of DNAJs. Rigorous masking with data from unrelated formalin-fixed tissue progressively eliminated many false-positive DNAJs, without loss of true positives, resulting in low numbers of false-positive passing current filters. This methodology enables more comprehensive clinical genomics testing on formalin-fixed clinical specimens.


Assuntos
Fixadores/química , Formaldeído/química , Neoplasias/genética , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Translocação Genética/genética , Sequenciamento Completo do Genoma/métodos , Algoritmos , Variações do Número de Cópias de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/isolamento & purificação , Feminino , Genoma Humano , Genômica/métodos , Humanos , Masculino , Neoplasias/patologia
2.
Genomics ; 112(6): 5313-5323, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33144219

RESUMO

Intraoperative diagnosis is routinely performed on cytology touch preparations (TPs) from core needle biopsies (CNBs). Current interest promotes their utility as an important source of patient tissue for clinical genomic testing. Herein we present whole genome structural variant analysis (SVA) from mate-pair sequencing (MPseq) and whole exome sequencing (WES) mutation calling in DNA directly whole genome amplified (WGA) from TPs. Chromosomal copy changes and somatic DNA junction detection from MPseq of TPs were highly consistent with associated CNBs and bulk resected tissues in all cases. While increased frequency coverage noise from limitations of amplification of limited sample input was significant, this was effectively compensated by natural tumor enrichment during the TP process, which also enhanced variant detection and loss of heterozygosity evaluations from WES. This novel TP methodology enables expanded utility of frequently limited CNB for both clinical and research genomic testing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Análise de Sequência de DNA , Alelos , Biópsia com Agulha de Grande Calibre , Técnicas Citológicas , Genômica/métodos , Humanos , Perda de Heterozigosidade , Neoplasias/patologia , Sequenciamento do Exoma
3.
J Thorac Oncol ; 14(9): 1567-1582, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103780

RESUMO

INTRODUCTION: Genomic technologies present a promising mechanism of resolving the clinical dilemma of distinguishing independent primary tumors from intrapulmonary metastases in NSCLC. We evaluated the utility of discordant mapping somatic junctions from chromosomal rearrangements in diagnosing metastatic disease compared to the current standard histologic review. MATERIAL AND METHODS: Mate-pair sequencing was performed on DNA extracted from 76 distinct tumors from 37 cases of multiple lung cancers. Discordant mapping junctions and chromosomal copy levels were assessed for each tumor. Blood-derived DNA was available on 22 of these cases for germline assessments. A lung cancer next-generation sequencing panel was additionally performed on tumor pairs from 17 patients. RESULTS: Whereas mate-pair sequencing was able to classify lineage in all tumor pairs, histologic review appeared to misclassify lineage in 9 of 33 (27%) same-histology tumor pair comparisons. Based on disagreement between the reviewing pathologists, histopathologic lineage was classified as indeterminate in seven cases. In two cases where pathologists agreed on a metastatic call, no shared junctions were found suggesting independent primaries. Although germline junctions passing algorithmic filters were common, on average less than three were present and all had predictable structures of small focal rearrangements or transposons. Evaluation of shared chromosomal copy changes and driver mutations through a lung cancer next-generation sequencing panel, while informative, were nondefinitive in calling lineage in all cases. CONCLUSIONS: The highly unique nature and prevalence of chromosomal rearrangement in lung cancers provide a useful and definitive technique for calling lineage in multifocal lung cancer.


Assuntos
Genômica/métodos , Neoplasias Pulmonares/genética , Adulto , Diferenciação Celular , Feminino , Humanos , Masculino , Metástase Neoplásica
4.
J Thorac Oncol ; 14(2): 276-287, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30316012

RESUMO

INTRODUCTION: Malignant pleural mesothelioma is a disease primarily associated with exposure to the carcinogen asbestos. Whereas other carcinogen-related tumors are associated with a high tumor mutation burden, mesothelioma is not. We sought to resolve this discrepancy. METHODS: We used mate-pair (n = 22), RNA (n = 28), and T cell receptor sequencing along with in silico predictions and immunologic assays to understand how structural variants of chromosomes affect the transcriptome. RESULTS: We observed that inter- or intrachromosomal rearrangements were present in every specimen and were frequently in a pattern of chromoanagenesis such as chromoplexy or chromothripsis. Transcription of rearrangement-related junctions was predicted to result in many potential neoantigens, some of which were proven to bind patient-specific major histocompatibility complex molecules and to expand intratumoral T cell clones. T cells responsive to these predicted neoantigens were also present in a patient's circulating T cell repertoire. Analysis of genomic array data from the mesothelioma cohort in The Cancer Genome Atlas suggested that multiple chromothriptic-like events negatively impact survival. CONCLUSIONS: Our findings represent the discovery of potential neoantigen expression driven by structural chromosomal rearrangements. These results may have implications for the development of novel immunotherapeutic strategies and the selection of patients to receive immunotherapies.


Assuntos
Antígenos/genética , Cromotripsia , Mesotelioma/genética , Neoplasias Pleurais/genética , Transcriptoma/genética , Seleção Clonal Mediada por Antígeno , Simulação por Computador , DNA de Neoplasias/análise , Dosagem de Genes , Rearranjo Gênico , Genômica , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Humanos , Linfócitos do Interstício Tumoral , Mesotelioma/patologia , Peptídeos/genética , Peptídeos/imunologia , Neoplasias Pleurais/patologia , Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA , Taxa de Sobrevida , Linfócitos T/imunologia
5.
Mod Pathol ; 30(9): 1223-1233, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28643793

RESUMO

Sporadic lymphangioleiomyomatosis is a progressive pulmonary cystic disease resulting from the infiltration of smooth muscle-like lymphangioleiomyomatosis cells into the lung. The migratory/metastasizing properties of the lymphangioleiomyomatosis cell together with the presence of somatic mutations, primarily in the tuberous sclerosis complex gene (TSC2), lead many to consider this a low-grade malignancy. As malignant tumors characteristically accumulate somatic structural variations, which have not been well studied in sporadic lymphangioleiomyomatosis, we utilized mate pair sequencing to define structural variations within laser capture microdissected enriched lymphangioleiomyomatosis cell populations from five sporadic lymphangioleiomyomatosis patients. Lymphangioleiomyomatosis cells were confirmed in each tissue by hematoxylin eosin stain review and by HMB-45 immunohistochemistry in four cases. A mutation panel demonstrated characteristic TSC2 driver mutations in three cases. Genomic profiles demonstrated normal diploid coverage across all chromosomes, with no aneuploidy or detectable gains/losses of whole chromosomal arms typical of neoplastic diseases. However, somatic rearrangements and smaller deletions were validated in the two cases which lacked TSC2 driver mutations. Most significantly, one of these sporadic lymphangioleiomyomatosis cases contained two different size deletions encompassing the entire TSC1 locus. The detection of a homozygous deletion of TSC1 driving a predicted case of sporadic lymphangioleiomyomatosis, consistent with the common two-hit TSC2 mutation model, has never been reported for sporadic lymphangioleiomyomatosis. However, while no evidence of the hereditary tuberous sclerosis complex disease was reported for this patient, the potential for mosaicism and sub-clinical phenotype cannot be ruled out. Nevertheless, this study demonstrates that somatic structural rearrangements are present in lymphangioleiomyomatosis disease and provides a novel method of genomic characterization of sporadic lymphangioleiomyomatosis cells, aiding in defining cases with no detected mutations by conventional methodologies. These structural rearrangements could represent additional pathogenic mechanisms in sporadic lymphangioleiomyomatosis disease, potentially affecting response to therapy and adding to the complex genetic story of this rare disease.


Assuntos
Biomarcadores Tumorais/genética , Rearranjo Gênico , Neoplasias Pulmonares/genética , Linfangioleiomiomatose/genética , Proteínas Supressoras de Tumor/genética , Biomarcadores Tumorais/análise , Análise Mutacional de DNA , Deleção de Genes , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/química , Linfangioleiomiomatose/metabolismo , Antígenos Específicos de Melanoma/análise , Mutação , Fenótipo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Antígeno gp100 de Melanoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA