Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Metabolites ; 13(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512495

RESUMO

Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis and its derivatives, the improvement of crops, and leaving an open window to the development of scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approximately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids, and phenolic compounds. However, despite the increase in scientific research on the subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic reconstruction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314 metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids, along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma cells (A549), combined with negligible impact against healthy human skin cells.

2.
Biofabrication ; 15(4)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37369196

RESUMO

Parkinson's disease (PD) is a complex and multifaceted neurodegenerative disorder that results from multiple environmental factors and multicellular interactions. Although several PD neuropathologies have been identified and described, the thorough understanding of PD pathophysiology and research has been largely limited by the absence of reliablein vitromodels that truly recapitulate PD microenvironments. Here, we propose a neuroimmune co-culture system that models PD neuropathologies by combining relevant multicellular interactions with environments that mimic the brain. This system is composed of: (i) 3D bioprinted cultures of mature human dopaminergic (DA) neurons grown on extracellular matrix (ECM)-derived scaffolds doped with electroconductive nanostructures, and (ii) a direct co-culture of human astrocytes and differentiated monocytes that models neuroinflammatory responses. When co-cultured in a transwell format, these two compartments recreate relevant multicellular environments that model PD pathologies after exposure to the neurotoxin A53Tα-synuclein. With immunofluorescent staining and gene expression analyses, we show that functional and mature DA 3D networks are generated within our ECM-derived scaffolds with superior performance to standard 2D cultures. Moreover, by analyzing cytokine secretion, cell surface markers, and gene expression, we define a human monocyte differentiation scheme that allows the appearance of both monocyte-derived macrophages and dendritic cell phenotypes, as well as their optimal co-culture ratios with human astrocytes to recreate synergistic neuroinflammatory responses. We show that the combined response of both compartments to A53Tα-synuclein stimulates the formation of intracellularα-synuclein aggregates, induces progressive mitochondrial dysfunction and reactive oxygen species production, downregulates the expression of synaptic, DA, and mitophagy-related genes, and promotes the initiation of apoptotic processes within the DA networks. Most importantly, these intracellular pathologies were comparable or superior to those generated with a rotenone-stimulated 2D control that represents the current standard forin vitroPD models and showed increased resilience towards these neurotoxic insults, allowing the study of disease progression over longer time periods than current models. Taken together, these results position the proposed model as a superior alternative to current 2D models for generating PD-related pathologiesin vitro.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Técnicas de Cocultura , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Macrófagos , Inflamação
3.
Front Bioeng Biotechnol ; 10: 947616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875496

RESUMO

Melanoma is an aggressive type of skin cancer that accounts for over 75% of skin cancer deaths despite comprising less than 5% of all skin cancers. Despite promising improvements in surgical approaches for melanoma resection, the survival of undetectable microtumor residues has remained a concern. As a result, hyperthermia- and drug-based therapies have grown as attractive techniques to target and treat cancer. In this work, we aim to develop a stimuli-responsive hydrogel based on chitosan methacrylate (ChiMA), porcine small intestine submucosa methacrylate (SISMA), and doxorubicin-functionalized reduced graphene oxide (rGO-DOX) that eliminates microtumor residues from surgically resected melanoma through the coupled effect of NIR light-induced photothermal therapy and heat-induced doxorubicin release. Furthermore, we developed an in silico model to optimize heat and mass transport and evaluate the proposed chemo/photothermal therapy in vitro over melanoma cell cultures.

4.
Front Pharmacol ; 13: 905347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837292

RESUMO

Plant-derived products have gained considerable attention as inflammation modulators given the wide variety of anti-inflammatory phytochemicals reported to be present in plants and their limited side effects in vivo during prolonged exposure periods. Non-centrifugal cane sugar (NCS) has been identified as a promising sugarcane-derived product due to its high polyphenolic composition and antioxidant potential, but its incorporations into nutraceuticals and other relevant products of biomedical interest has been limited by the ample composition-wise variability resulting from extreme and loosely controlled processing conditions. Here, we assessed the effect of reducing thermal exposure during NCS processing on the retained polyphenolic profiles, as well as on their antioxidant and anti-inflammatory activities. Specifically, we proposed two modified NCS production methods that reduce exposure to unwanted thermal processing conditions by 1) limiting the employed temperatures through vacuum-aided dehydration and 2) by reducing exposure time through refractance window evaporation. By comparing the modified NCS products with traditional NCS, we showed that the proposed process strategies yield enhanced polyphenolic profiles, as evidenced by the results of the Folin-Ciocalteu polyphenol quantification method and the components identification by HPLC coupled to mass spectrometry. Although these compositional differences failed to impact the antioxidant profiles and cytocompatibility of the products, they showed an enhanced anti-inflammatory potential, given their superior modulation capacity of inflammatory cytokine secretion in both systemic and neuroinflammatory scenarios in vitro. Moreover, we showed that both modified NCS products interfere with TLR4 signaling in human monocytes to a significantly greater extent than traditional NCS. However, the anti-inflammatory effect of NCS produced under window refractance evaporation was slightly superior than under vacuum-aided dehydration, demonstrating that reducing exposure time to high temperatures is likely more effective than reducing the operation temperature. Overall, these findings demonstrated that limiting thermal exposure is beneficial for the development of NCS-based natural products with superior anti-inflammatory potential, which can be further exploited in the rational design of more potent nutraceuticals for potentially preventing chronic inflammatory diseases.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932957

RESUMO

Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA