Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nature ; 627(8004): 656-663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418883

RESUMO

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.


Assuntos
Adenocarcinoma de Pulmão , Diferenciação Celular , Células Epiteliais , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Aneuploidia , Carcinógenos/toxicidade , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Organoides/efeitos dos fármacos , Organoides/metabolismo , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Taxa de Sobrevida , Produtos do Tabaco/efeitos adversos , Produtos do Tabaco/toxicidade
3.
Adv Biol (Weinh) ; 6(9): e2200046, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751462

RESUMO

The importance of neurons and nerve fibers in the tumor microenvironment (TME) of solid tumors is now acknowledged after being unexplored for a long time; this is possible due to the development of new technologies that allow in situ characterization of the TME. Recent studies have shown that the density and types of nerves that innervate tumors can predict a patient's clinical outcome and drive several processes of tumor biology. Nowadays, several efforts in cancer research and neuroscience are taking place to elucidate the mechanisms that drive tumor-associated innervation and nerve-tumor and nerve-immune interaction. Assessment of neurons and nerves within the context of the TME can be performed in situ, in tumor tissue, using several pathology-based strategies that utilize histochemical and immunohistochemistry principles, hi-plex technologies, and computational pathology approaches to identify measurable histopathological characteristics of nerves. These features include the number and type of tumor associated nerves, topographical location and microenvironment of neural invasion of malignant cells, and investigation of neuro-related biomarker expression in nerves, tumor cells, and cells of the TME. A deeper understanding of these complex interactions and the impact of nerves in tumor biology will guide the design of better strategies for targeted therapy in clinical trials.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imuno-Histoquímica , Neoplasias/metabolismo , Fibras Nervosas/patologia , Neurônios/metabolismo , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA