Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vis Comput Ind Biomed Art ; 5(1): 8, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254557

RESUMO

Lymph node involvement increases the risk of breast cancer recurrence. An accurate non-invasive assessment of nodal involvement is valuable in cancer staging, surgical risk, and cost savings. Radiomics has been proposed to pre-operatively predict sentinel lymph node (SLN) status; however, radiomic models are known to be sensitive to acquisition parameters. The purpose of this study was to develop a prediction model for preoperative prediction of SLN metastasis using deep learning-based (DLB) features and compare its predictive performance to state-of-the-art radiomics. Specifically, this study aimed to compare the generalizability of radiomics vs DLB features in an independent test set with dissimilar resolution. Dynamic contrast-enhancement images from 198 patients (67 positive SLNs) were used in this study. Of these subjects, 163 had an in-plane resolution of 0.7 × 0.7 mm2, which were randomly divided into a training set (approximately 67%) and a validation set (approximately 33%). The remaining 35 subjects with a different in-plane resolution (0.78 × 0.78 mm2) were treated as independent testing set for generalizability. Two methods were employed: (1) conventional radiomics (CR), and (2) DLB features which replaced hand-curated features with pre-trained VGG-16 features. The threshold determined using the training set was applied to the independent validation and testing dataset. Same feature reduction, feature selection, model creation procedures were used for both approaches. In the validation set (same resolution as training), the DLB model outperformed the CR model (accuracy 83% vs 80%). Furthermore, in the independent testing set of the dissimilar resolution, the DLB model performed markedly better than the CR model (accuracy 77% vs 71%). The predictive performance of the DLB model outperformed the CR model for this task. More interestingly, these improvements were seen particularly in the independent testing set of dissimilar resolution. This could indicate that DLB features can ultimately result in a more generalizable model.

2.
Quant Imaging Med Surg ; 12(2): 1198-1213, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35111616

RESUMO

BACKGROUND: Although lumbar bone marrow fat fraction (BMFF) has been demonstrated to be predictive of osteoporosis, its utility is limited by the requirement of manual segmentation. Additionally, quantitative features beyond simple BMFF average remain to be explored. In this study, we developed a fully automated radiomic pipeline using deep learning-based segmentation to detect osteoporosis and abnormal bone density (ABD) using a <20 s modified Dixon (mDixon) sequence. METHODS: In total, 222 subjects underwent quantitative computed tomography (QCT) and lower back magnetic resonance imaging (MRI). Bone mineral density (BMD) were extracted from L1-L3 using QCT as the reference standard; 206 subjects (48.8±14.9 years old, 140 females) were included in the final analysis, and were divided temporally into the training/validation set (142/64 subjects). A deep-learning network was developed to perform automated segmentation. Radiomic models were built using the same training set to predict ABD and osteoporosis using the mDixon maps. The performance was evaluated using the temporal validation set comprised of 64 subjects, along with the automated segmentation. Additional 25 subjects (56.1±8.8 years, 14 females) from another site and a different scanner vendor was included as independent validation to evaluate the performance of the pipeline. RESULTS: The automated segmentation achieved an outstanding mean dice coefficient of 0.912±0.062 compared to manual in the temporal validation. Task-based evaluation was performed in the temporal validation set, for predicting ABD and osteoporosis, the area under the curve, sensitivity, specificity, and accuracy were 0.925/0.899, 0.923/0.667, 0.789/0.873, 0.844/0.844, respectively. These values were comparable to that of manual segmentation. External validation (cross-vendor) was also performed; the area under the curve, sensitivity, specificity, and accuracy were 0.688/0.913, 0.786/0.857, 0.545/0.944, 0.680/0.920 for ABD and osteoporosis prediction, respectively. CONCLUSIONS: Our work is the first attempt using radiomics to predict osteoporosis with BMFF map, and the deep-learning based segmentation will further facilitate the clinical utility of the pipeline as a screening tool for early detection of ABD.

3.
Acad Radiol ; 29 Suppl 1: S223-S228, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160860

RESUMO

RATIONALE AND OBJECTIVES: Peritumoral features have been suggested to be useful in improving the prediction performance of radiomic models. The aim of this study is to systematically investigate the prediction performance improvement for sentinel lymph node (SLN) status in breast cancer from peritumoral features in radiomic analysis by exploring the effect of peritumoral region sizes. MATERIALS AND METHODS: This retrospective study was performed using dynamic contrast-enhanced MRI scans of 162 breast cancer patients. The effect of peritumoral features was evaluated in a radiomics pipeline for predicting SLN metastasis in breast cancer. Peritumoral regions were generated by dilating the tumor regions-of-interest (ROIs) manually annotated by two expert radiologists, with thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm. The prediction models were established in the training set (∼67% of cases) using the radiomics pipeline with and without peritumoral features derived from different peritumoral thicknesses. The prediction performance was tested in an independent validation set (the remaining ∼33%). RESULTS: For this specific application, the accuracy in the validation set when using the two radiologists' ROIs could be both improved from 0.704 to 0.796 by incorporating peritumoral features. The choice of the peritumoral size could affect the level of improvement. CONCLUSION: This study systematically investigates the effect of peritumoral region sizes in radiomic analysis for prediction performance improvement. The choice of the peritumoral size is dependent on the ROI drawing and would affect the final prediction performance of radiomic models, suggesting that peritumoral features should be optimized in future radiomics studies.


Assuntos
Neoplasias da Mama , Linfonodo Sentinela , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Metástase Linfática/diagnóstico por imagem , Estudos Retrospectivos , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia
4.
BMC Musculoskelet Disord ; 20(1): 560, 2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31759393

RESUMO

BACKGROUND: This study is aimed to determine the efficacy of X-Ray Microtomography (micro-CT) in predicting oxytocin (OT) treatment response in rabbit osteoporosis(OP) model. METHODS: Sixty-five rabbits were randomly divided into three groups: control group, ovariectomy (OVX) -vehicle and OVX-oxytocin group. The controls underwent sham surgery. OVX-vehicle and OVX-oxytocin groups were subjected to bilateral OVX. The rabbits in OVX-oxytocin group were injected with oxytocin. In the 0th, 4th, 8th, 10th and 12th weeks post OVX operation, bone mineral density (BMD) and bone micro-architectural parameters were measured in three groups. RESULTS: Bone mineral density (BMD), bone volume fraction (BV/TV), Trabecular Number (Tb.N), and Trabecular Thickness (Tb.Th) decreased, while Trabecular Spacing (Tb.Sp) and Structure Model Index (SMI) increased overtime in all the three groups. In OVX-oxytocin group, the bone deterioration tendency is slowing down compared with that of the OVX-vehicle group. The BMD of the OVX-oxytocin group was significantly lower than those in the OVX-vehicle group at 12th week (P = 0.017). BV/TV and Tb.Sp in OVX-oxytocin group changed significantly from 8th week (P = 0.043) and 12th week (P = 0.014), which is earlier than that of BMD and other bone micro-architectural parameters. CONCLUSION: BV/TV and Tb.Sp changed prior to BMD and other bone micro-architectural parameters with oxytocin intervention, which indicate that they are more sensitive markers for predicting early osteoporosis and treatment monitoring when using micro-CT to evaluate osteoporosis rabbit model.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osteoporose/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Ovariectomia/efeitos adversos , Ocitocina/uso terapêutico , Microtomografia por Raio-X/métodos , Animais , Densidade Óssea/fisiologia , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/fisiologia , Feminino , Imageamento Tridimensional/métodos , Ovariectomia/tendências , Ocitocina/farmacologia , Coelhos , Distribuição Aleatória
5.
Magn Reson Med ; 82(2): 786-795, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30957936

RESUMO

PURPOSE: Radiomics allows for powerful data-mining and feature extraction techniques to guide clinical decision making. Image segmentation is a necessary step in such pipelines and different techniques can significantly affect results. We demonstrate that a convolutional neural network (CNN) segmentation method performs comparably to expert manual segmentations in an established radiomics pipeline. METHODS: Using the manual regions of interest (ROIs) of an expert radiologist (R1), a CNN was trained to segment breast lesions from dynamic contrast-enhanced MRI (DCE-MRI). Following network training, we segmented lesions for the testing set of a previously established radiomics pipeline for predicting lymph node metastases using DCE-MRI of breast cancer. Prediction accuracy of CNN segmentations relative to manual segmentations by R1 from the original study, a resident (R2), and another expert radiologist (R3) were determined. We then retrained the CNN and radiomics model using R3's manual segmentations to determine the effects of different expert observers on end-to-end prediction. RESULTS: Using R1's ROIs, the CNN achieved a mean Dice coefficient of 0.71 ± 0.16 in the testing set. When input to our previously published radiomics pipeline, these CNN segmentations achieved comparable prediction performance to R1's manual ROIs, and superior performance to those of the other radiologists. Similar results were seen when training the CNN and radiomics model using R3's ROIs. CONCLUSION: A CNN architecture is able to provide DCE-MRI breast lesion segmentations which are suitable for input to our radiomics model. Moreover, the previously established radiomics model and CNN can be accurately trained end-to-end using ground truth data provided by distinct experts.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Mama/diagnóstico por imagem , Bases de Dados Factuais , Feminino , Humanos , Radiologistas
6.
J Magn Reson Imaging ; 49(1): 131-140, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171822

RESUMO

BACKGROUND: Sentinel lymph node (SLN) status is an important prognostic factor for patients with breast cancer, which is currently determined in clinical practice by invasive SLN biopsy. PURPOSE: To noninvasively predict SLN metastasis in breast cancer using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) intra- and peritumoral radiomics features combined with or without clinicopathologic characteristics of the primary tumor. STUDY TYPE: Retrospective. POPULATION: A total of 163 breast cancer patients (55 positive SLN and 108 negative SLN). FIELD STRENGTH/SEQUENCE: 1.5T, T1 -weighted DCE-MRI. ASSESSMENT: A total of 590 radiomic features were extracted for each patient from both intratumoral and peritumoral regions of interest. To avoid overfitting, the dataset was randomly separated into a training set (∼67%) and a validation set (∼33%). The prediction models were built with the training set using logistic regression on the most significant radiomic features in the training set combined with or without clinicopathologic characteristics. The prediction performance was further evaluated in the independent validation set. STATISTICAL TESTS: Mann-Whitney U-test, Spearman correlation, least absolute shrinkage selection operator (LASSO) regression, logistic regression, and receiver operating characteristic (ROC) analysis were performed. RESULTS: Combining radiomic features with clinicopathologic characteristics, six features were automatically selected in the training set to establish the prediction model of SLN metastasis. In the independent validation set, the area under ROC curve (AUC) was 0.869 (NPV = 0.886). Using radiomic features alone in the same procedure, 4 features were selected and the validation set AUC was 0.806 (NPV = 0.824). DATA CONCLUSION: This is the first attempt to demonstrate the feasibility of using DCE-MRI radiomics to predict SLN metastasis in breast cancer. Clinicopathologic characteristics improved the prediction performance. This study provides noninvasive methods to evaluate SLN status for guiding further treatment of breast cancer patients, and can potentially benefit those with negative SLN, by eliminating unnecessary invasive lymph node removal and the associated complications, which is a step further towards precision medicine. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:131-140.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Meios de Contraste/administração & dosagem , Metástase Linfática , Imageamento por Ressonância Magnética , Linfonodo Sentinela/diagnóstico por imagem , Adulto , Idoso , Biópsia , Reações Falso-Positivas , Feminino , Humanos , Linfonodos/patologia , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Análise de Regressão , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA