Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Transl Oncol ; 15(1): 101259, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735896

RESUMO

Melanoma is an aggressive skin cancer that metastasizes to other organs. While immune checkpoint blockade with anti-PD-1 has transformed the treatment of advanced melanoma, many melanoma patients fail to respond to anti-PD-1 therapy or develop acquired resistance. Thus, effective treatment of melanoma still represents an unmet clinical need. Our prior studies support the anti-cancer activity of the 17ß-hydroxywithanolide class of natural products, including physachenolide C (PCC). As single agents, PCC and its semi-synthetic analog demonstrated direct cytotoxicity in a panel of murine melanoma cell lines, which share common driver mutations with human melanoma; the IC50 values ranged from 0.19-1.8 µM. PCC treatment induced apoptosis of tumor cells both in vitro and in vivo. In vivo treatment with PCC alone caused the complete regression of established melanoma tumors in all mice, with a durable response in 33% of mice after discontinuation of treatment. T cell-mediated immunity did not contribute to the therapeutic efficacy of PCC or prevent tumor recurrence in YUMM2.1 melanoma model. In addition to apoptosis, PCC treatment induced G0-G1 cell cycle arrest of melanoma cells, which upon removal of PCC, re-entered the cell cycle. PCC-induced cycle cell arrest likely contributed to the in vivo tumor recurrence in a portion of mice after discontinuation of treatment. Thus, 17ß-hydroxywithanolides have the potential to improve the therapeutic outcome for patients with advanced melanoma.

3.
Cancer ; 125(20): 3514-3525, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31355930

RESUMO

Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.


Assuntos
Epigenômica , Genômica , Osteossarcoma/terapia , Pesquisa Translacional Biomédica , Criança , Humanos , Mutação/genética , Osteossarcoma/epidemiologia , Osteossarcoma/genética , Osteossarcoma/patologia , Proteômica , Proteína Supressora de Tumor p53/genética
4.
Neoplasia ; 21(6): 516-532, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31029032

RESUMO

Patients with metastatic or relapsed/refractory osteosarcoma (OS) have a 5-year survival rate of <30%. This has remained unchanged over several decades. One of the factors contributing to lack of improvement in survival is the development of chemoresistance. Hence, elucidating and targeting the mechanisms that promote survival against chemotherapy and lead to chemoresistance is pivotal to improving outcomes for these patients. We identified that endoplasmic reticulum (ER) stress-activated transcription factor, ATF6α, is essential for the survival of OS cells against chemotherapy induced cell death. ATF6α cleavage and activity were enhanced in OS cells compared to normal osteoblasts and knockdown of ATF6α expression enhanced sensitivity of OS cells against chemotherapy induced cell death. This was in part due to increased Bax activation. Pharmacologic inhibition or knock-down of downstream targets of ATF6α, protein disulfide isomerases (PDI) and ERO1ß, a thiol oxidase that is involved in the re-oxidation of PDIs also independently induced pronounced killing of OS cells following chemotherapy. Analysis of primary tumors from OS patients reveals that patients with high levels of nuclear ATF6α: (1) also had increased expression of its downstream targets the chaperone BiP and enzyme PDI, (2) had a significant likelihood of developing metastasis at diagnosis, (3) had significantly poorer overall and progression free survival, and (4) had poorer response to chemotherapy. These findings suggest that targeting survival signaling by the ATF6α pathway in OS cells may favor eradication of refractory OS tumor cells and ATF6α could be a useful predictor for chemo-responsiveness and prognosis.


Assuntos
Fator 6 Ativador da Transcrição/genética , Glicoproteínas de Membrana/genética , Osteossarcoma/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Isomerases de Dissulfetos de Proteínas/genética , Fator 6 Ativador da Transcrição/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Irinotecano/farmacologia , Osteossarcoma/genética , Osteossarcoma/patologia , Prognóstico , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA