Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 18(1): 150, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092584

RESUMO

BACKGROUND: Exosomes are endocytic-extracellular vesicles with a diameter around 100 nm that play an essential role on the communication between cells. In fact, they have been proposed as candidates for the diagnosis and the monitoring of different pathologies (such as Parkinson, Alzheimer, diabetes, cardiac damage, infection diseases or cancer). RESULTS: In this study, magnetic nanoparticles (Fe3O4NPs) were successfully functionalized with an exosome-binding antibody (anti-CD9) to mediate the magnetic capture in a microdevice. This was carried out under flow in a 1.6 mm (outer diameter) microchannel whose wall was in contact with a set of NdFeB permanent magnets, giving a high magnetic field across the channel diameter that allowed exosome separation with a high yield. To show the usefulness of the method, the direct capture of exosomes from whole blood of patients with pancreatic cancer (PC) was performed, as a proof of concept. The captured exosomes were then subjected to analysis of CA19-9, a protein often used to monitor PC patients. CONCLUSIONS: Here, we describe a new microfluidic device and the procedure for the isolation of exosomes from whole blood, without any need of previous isolation steps, thereby facilitating translation to the clinic. The results show that, for the cases analyzed, the evaluation of CA19-9 in exosomes was highly sensitive, compared to serum samples.


Assuntos
Antígenos Glicosídicos Associados a Tumores/sangue , Antígenos Glicosídicos Associados a Tumores/isolamento & purificação , Análise Química do Sangue/métodos , Exossomos/química , Neoplasias Pancreáticas/diagnóstico , Anticorpos/química , Anticorpos/metabolismo , Boro/química , Campos Eletromagnéticos , Humanos , Ferro/química , Dispositivos Lab-On-A-Chip , Nanopartículas de Magnetita/química , Neodímio/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA