Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13619, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193926

RESUMO

Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.


Assuntos
Antifúngicos/imunologia , Criptococose/imunologia , Cryptococcus neoformans/imunologia , Células Dendríticas/imunologia , Lisossomos/imunologia , Proteínas/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose
2.
Innate Immun ; 24(3): 152-162, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29482417

RESUMO

Macrophages are important innate immune cells that respond to microbial insults. In response to multi-bacterial infection, the macrophage activation state may change upon exposure to nascent mediators, which results in different bacterial killing mechanism(s). In this study, we utilized two respiratory bacterial pathogens, Mycobacterium bovis (Bacillus Calmette Guerin, BCG) and Francisella tularensis live vaccine strain (LVS) with different phagocyte evasion mechanisms, as model microbes to assess the influence of initial bacterial infection on the macrophage response to secondary infection. Non-activated (M0) macrophages or activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene) were first infected with BCG for 24-48 h, subsequently challenged with LVS, and the results of inhibition of LVS replication in the macrophages was assessed. BCG infection in M0 macrophages activated TLR2-MyD88 and Mincle-CARD9 signaling pathways, stimulating nitric oxide (NO) production and enhanced killing of LVS. BCG infection had little effect on LVS escape from phagosomes into the cytosol in M0 macrophages. In contrast, M2-polarized macrophages exhibited enhanced endosomal acidification, as well as inhibiting LVS replication. Pre-infection with BCG did not induce NO production and thus did not further reduce LVS replication. This study provides a model for studies of the complexity of macrophage activation in response to multi-bacterial infection.


Assuntos
Infecções Bacterianas/imunologia , Coinfecção/imunologia , Macrófagos/imunologia , Fagossomos/imunologia , Animais , Polaridade Celular , Endossomos/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Inata/imunologia , Interleucina-4/biossíntese , Camundongos , Infecções por Mycobacterium/imunologia , Mycobacterium bovis/imunologia , Óxido Nítrico/biossíntese , Transdução de Sinais/imunologia , Transfecção , Tularemia/imunologia , Vacinas Vivas não Atenuadas
3.
J Biol Chem ; 287(44): 37185-94, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22923614

RESUMO

Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella.


Assuntos
Fosfatase Alcalina/sangue , Bacteriemia/microbiologia , Proteínas de Bactérias/fisiologia , Francisella/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Tularemia/microbiologia , Trifosfato de Adenosina/química , Fosfatase Alcalina/antagonistas & inibidores , Animais , Carga Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Chaperonina 60/metabolismo , Cromatografia DEAE-Celulose , Feminino , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/isolamento & purificação , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray
4.
PLoS One ; 6(3): e18201, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21483828

RESUMO

BACKGROUND: Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918. METHODS AND FINDINGS: The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and µmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed. CONCLUSIONS: F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Francisella/metabolismo , Francisella/patogenicidade , Interferon gama/farmacologia , Animais , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Células Cultivadas , Feminino , Francisella/efeitos dos fármacos , Francisella/genética , Teste de Complementação Genética , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nitritos/metabolismo , Polimixina B/farmacologia , Tularemia/microbiologia , Virulência/genética
5.
Vaccine ; 27(41): 5554-61, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19651173

RESUMO

Francisella tularensis, an intracellular Gram-negative bacterium, is the causative agent of tularemia and a potential bioweapon. Currently, there is no licensed vaccine against this organism. We have characterized the efficacy of a defined F. tularensis subsp. novicida mutant (DeltaiglB) as a live attenuated vaccine against pneumonic tularemia. Replication of the iglB mutant (KKF235) in murine macrophages was significantly lower than the wild type novicida strain U112, and exhibited an LD(50) greater than 10(6)-fold (>10(7)CFU vs <10CFU) in an intranasal challenge model. Mice immunized with KKF235 intranasally or orally induced robust antigen-specific splenic IFN-gamma recall responses, as well as the production of systemic and mucosal antibodies. Intranasal vaccination with KKF235 protected mice from subsequent homotypic challenge with U112 as well as heterotypic challenge with F. tularensis subsp. holarctica (LVS). Moreover, protected animals also exhibited minimal pathological changes compared with mock-vaccinated and challenged animals. The protection conferred by KKF235 vaccination was shown to be highly dependent on endogenous IFN-gamma production. Most significantly, oral immunization with KKF235 protected mice from a highly lethal subsp. tularensis (SCHU S4) pulmonary challenge. Collectively, these results further suggest the feasibility of using defined pathogenicity island mutants as live vaccine candidates against pneumonic tularemia.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Deleção de Genes , Ilhas Genômicas , Tularemia/prevenção & controle , Administração Oral , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Linhagem Celular , Contagem de Colônia Microbiana , Feminino , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Genes Bacterianos , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Baço/imunologia , Análise de Sobrevida , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA