RESUMO
The specificity of peptide binding by human leukocyte antigen (HLA) class I molecules was investigated in a cell-free direct-binding assay. Peptides were assessed for binding to HLA-A2 and HLA-B27 by measuring the formation of heterotrimeric HLA complexes that consisted of iodinated beta 2-microglobulin, HLA heavy chain fragments isolated from the Escherichia coli cytoplasm, and peptide. In this system, no detectable HLA heavy chain-beta 2-microglobulin complexes were formed unless appropriate peptides were intentionally added to the reconstitution solution. Analysis with monoclonal antibodies demonstrated that these heterotrimeric complexes were correctly folded. Five nonhomologous peptides, known to form complexes with HLA-A2 or HLA-B27 from T-cell functional studies, were tested for their capacity to bind to HLA-A2 and HLA-B27 using the reconstitution assay. Four of the peptides bound to the appropriate class I molecule only. One peptide and some (but not all) substitution analogs of it bound to both HLA-A2 and HLA-B27. The effect of peptide length on binding to HLA-B27 was studied, and it was found that the optimal length was 9 or 10 amino acid residues; however, one peptide that bound to HLA-B27 was 15 amino acids long. All peptides that bound to HLA-B27 in the direct-binding assay also competed with antigenic peptides for binding to HLA-B27 on the surface of intact cells, as determined by a standard cytotoxic T-lymphocyte functional assay. Thus, we conclude that HLA-A2 and HLA-B27 bind distinct but partially overlapping sets of peptides and that, at least in vitro, the assembly of HLA heavy chain-beta 2-microglobulin complexes requires specific peptides.