Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1774(1): 65-71, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17141592

RESUMO

N-ethylmaleimide (NEM)-resistant acyl-coenzyme A oxidase (ACO) has been desired for the determination of free fatty acids (FFAs). In order to meet this demand, we prepared recombinant ACO from Arthrobacter ureafaciens NBRC 12140. The coding region of the gene was 2109, encoding a protein of 703 amino acids with a predicted molecular mass of 76.5 kDa. The heterologous expression level in Escherichia coli was 520-fold higher than that in the native strain. The purified enzyme retained more than 60% activity after incubation in the presence of 10 mM NEM at 37 degrees C for 4 h, while other commercially available ACOs showed only less than 10% activities after the same NEM treatment. We presume that this is due to the presence of only three cysteines in ACO from A. ureafaciens. Site-directed mutagenesis studies and close scrutiny of the three-dimensional structures of other related ACOs suggested that these cysteines were buried in the protein and unreactive to NEM. The recombinant enzyme was used for the colorimetric determination of free fatty acid, which gave a linear calibration.


Assuntos
Acil-CoA Oxidase/genética , Acil-CoA Oxidase/isolamento & purificação , Arthrobacter/enzimologia , Etilmaleimida/farmacologia , Acil-CoA Oxidase/antagonistas & inibidores , Sequência de Aminoácidos , Clonagem Molecular , Colorimetria , Resistência a Medicamentos , Estabilidade Enzimática , Escherichia coli/enzimologia , Ácidos Graxos não Esterificados/análise , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/biossíntese , Alinhamento de Sequência
2.
J Biochem ; 131(3): 365-74, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11872165

RESUMO

Acyl-CoA oxidase (ACO) catalyzes the first and rate-determining step of the peroxisomal beta-oxidation of fatty acids. The crystal structure of ACO-II, which is one of two forms of rat liver ACO (ACO-I and ACO-II), has been solved and refined to an R-factor of 20.6% at 2.2-A resolution. The enzyme is a homodimer, and the polypeptide chain of the subunit is folded into the N-terminal alpha-domain, beta-domain, and C-terminal alpha-domain. The X-ray analysis showed that the overall folding of ACO-II less C-terminal 221 residues is similar to that of medium-chain acyl-CoA dehydrogenase (MCAD). However, the N-terminal alpha- and beta-domains rotate by 13 with respect to the C-terminal alpha-domain compared with those in MCAD to give a long and large crevice that accommodates the cofactor FAD and the substrate acyl-CoA. FAD is bound to the crevice between the beta- and C-terminal domains with its adenosine diphosphate portion interacting extensively with the other subunit of the molecule. The flavin ring of FAD resides at the active site with its si-face attached to the beta-domain, and is surrounded by active-site residues in a mode similar to that found in MCAD. However, the residues have weak interactions with the flavin ring due to the loss of some of the important hydrogen bonds with the flavin ring found in MCAD. The catalytic residue Glu421 in the C-terminal alpha-domain seems to be too far away from the flavin ring to abstract the alpha-proton of the substrate acyl-CoA, suggesting that the C-terminal domain moves to close the active site upon substrate binding. The pyrimidine moiety of flavin is exposed to the solvent and can readily be attacked by molecular oxygen, while that in MCAD is protected from the solvent. The crevice for binding the fatty acyl chain is 28 A long and 6 A wide, large enough to accommodate the C23 acyl chain.


Assuntos
Acil-CoA Desidrogenases/metabolismo , Mitocôndrias Hepáticas/enzimologia , Oxirredutases/química , Peroxissomos/enzimologia , Acil-CoA Desidrogenase , Acil-CoA Desidrogenases/química , Acil-CoA Oxidase , Animais , Sítios de Ligação , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Ácidos Graxos/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/química , Flavoproteínas/isolamento & purificação , Flavoproteínas/metabolismo , Fígado/enzimologia , Modelos Moleculares , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA