Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(3): e202201263, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36806913

RESUMO

Honeybees provide multiple products such as bee venom (BV) which are used for various nutritional and medicinal purposes. BV has received great attention due to its wide range of bioactive components with potential anti-cancer effects on different cancers. Triple negative breast cancer (TNBC) is defined as an aggressive type of breast cancer and new therapeutic targets are required for its treatment. In the current literature information is varied about the composition and quantity of BV bioactive compounds as well as the origin of BV and its significance. In this context, the cytotoxic and apoptotic effects of BV with a higher rate of mellitin from Apis mellifera anatoliaca (Mugla ecotype) on MDA-MB-231 cells was evaluated, in vitro. The cytotoxic, apoptotic and morphological effects of BV were determined by WST-1, Annexin V, cell cycle analysis and Acridine Orange staining. The results showed that BV caused apoptotic cell death in TNBC cells at a lower dose (0.47 µg/mL, p<0.01). This study suggests that BV could be developed as a potential therapeutic agent for cancer treatment. However, the mechanism of BV-induced apoptosis death should be clarified at the molecular level.


Assuntos
Antineoplásicos , Venenos de Abelha , Neoplasias de Mama Triplo Negativas , Humanos , Abelhas , Animais , Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral
2.
Appl Biochem Biotechnol ; 195(5): 3194-3205, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574137

RESUMO

Extraction and characterization of natural products provide the opportunity to expand our arsenal of drug candidates against a wide range of diseases including cancer and inflammatory disorders. Previous studies have shown bee venom to have immense potential as an anti-inflammatory drug candidate. In this study, we focused on the venom of Apis mellifera anatoliaca and characterized its content by HPLC. An in vitro inflammation model based on lipopolysaccharide (LPS)-stimulated mammalian macrophages was utilized to examine the venom's anti-inflammatory potential. Additionally, its antiproliferative activity was evaluated in vitro against a human glioblastoma cell line. Based on the TNF, IL6, GMCSF, and IL12p40 pro-inflammatory cytokine production level in LPS-induced macrophages, venom-treated groups showed substantial decrease in the inflammatory action compared to untreated LPS-stimulated macrophages. When the cells were analyzed for viability, the venom did not have any cytotoxic effect on the macrophages at the concentration ranges that were utilized. Moreover, IC50 value of the venom was above 60 µg/mL on glioblastoma cancer cell line. These results suggest that the Apis mellifera anatoliaca venom does not have anticancer drug candidate potential, whereas it can efficiently be used against inflammatory and autoimmune disorders. To our knowledge, this is the first study to specifically examine the effect of anti-inflammatory activity of Apis mellifera anatoliaca venom on macrophages.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Abelhas , Animais , Lipopolissacarídeos/farmacologia , Citocinas , Glioblastoma/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Macrófagos , Mamíferos
3.
J Trace Elem Med Biol ; 75: 127104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427435

RESUMO

BACKGROUND: Bee pollen, known as a natural super-food with valuable nutritional ingredients, is regarded as a good indicator of ecotoxic substances, such as potentially toxic elements (PTEs). Therefore, this study aims to examine the concentrations of selected PTEs (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Se, Sn, Sr, V, Zn) in bee pollen purchased from online markets in Turkey and perform a health risk assessment to identify the potential risk to consumers. METHODS: The quantitative analyses were conducted by inductively coupled plasma optical emission spectrometry (ICP-OES). RESULTS: The mean values of essential PTEs in decreasing content order were Mg > Fe > Zn > Mn > Cu > Ni > Se > Cr > Mo >Co = V. Regarding the results of the study, daily consumption (40 g for adult or 20 g for children) of commercial bee pollen can recompense 20-35 % of daily Cu, Mn, Se requirements for children, adults, pregnant, and breastfeeding women. The decreasing content order of non-essential elements was Al > Sn > Sr > Ba > Pb > As. Cadmium and Hg concentrations were below the detection limits in all the samples. In terms of food and public health; detection of the PTEs concentrations is necessary to assess the quality and safety of bee pollen before consumption. According to the carcinogenic and non-carcinogenic risk assessments; commercial pollen consumption does not pose a health risk to either children or adults for the PTEs monitored in this study. CONCLUSION: We conclude that bee pollen is an ideal indicator for the monitoring of environmental pollution of PTEs and also a valuable source of essential elements. This study highlights the need to develop standards that regulate acceptable concentrations of PTEs.


Assuntos
Carcinógenos , Feminino , Animais , Turquia , Medição de Risco
4.
Environ Sci Pollut Res Int ; 25(35): 35376-35386, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30343372

RESUMO

An increasing amount of evidence suggests that phthalic acid esters (PAE), polychlorinated biphenyls (PCB), polybrominated diphenyl ethers (PBDE), and organochlorine pesticides (OCP) are related to mutagenic, carcinogenic, and endocrine disruptor effects (EDCs). These lipophilic compounds are highly resistant to breakdown processes, and consequently remain in the environment, followed by uptake into the food chain. Human exposure to lipophilic compounds results from the consumption of food containing EDCs, mainly foodstuffs of animal origin with a high fat content, since these contaminants accumulate in fatty tissues. Foodstuffs in which EDCs can accumulate include meat, fish, eggs, and milk. We investigated the contamination in edible eggs to determine whether relative differences in the contaminants' residue levels appeared in three types of egg production (i.e., battery, free-range, and organic). The results showed that PAEs, especially dimethyl phthalate contamination, was the most abundant in the battery eggs, and the PCBs, PBDEs, and OCPs were the most abundant in the free-range eggs. The eggs were contaminated by more than one chemical, and as many as five contaminants (PCB180, PBDE47, dimethyl phthalate, diethyl phthalate, and di-n-butyl phthalate in battery eggs, and PCB138, PCB153, PCB180, diethyl phthalate, and di-2-ethylhexyl phthalate in organic eggs) were detected in the same egg. However, none of the chemicals detected were at the maximum limit of acceptable risk.


Assuntos
Galinhas/crescimento & desenvolvimento , Ovos/análise , Disruptores Endócrinos/análise , Contaminação de Alimentos/análise , Alimentos Orgânicos/análise , Agricultura Orgânica/métodos , Animais , Galinhas/metabolismo , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Medição de Risco , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA