Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(6): 6460-75, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26771136

RESUMO

Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response.


Assuntos
Cromatina/genética , Cromossomos Humanos/genética , Regulação da Expressão Gênica , Genoma Humano/genética , Infecções por Herpesviridae/genética , Nucleossomos/genética , Ativação Viral/genética , Posicionamento Cromossômico , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ligação Proteica , Fatores de Transcrição , Sítio de Iniciação de Transcrição
2.
Genom Data ; 2: 114-116, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25152865

RESUMO

In the eukaryotic nucleus, DNA is packaged into chromatin. The fundamental subunit of chromatin is the nucleosome, DNA is wrapped 1.6 times around a histone octamer core. Nuclear processes in eukaryotes are impacted by whether regulatory DNA is occupied by nucleosomes. We used microarrays to measure nucleosome occupancy in human cells post Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation at hundreds of immunity-related loci. The detailed analysis of these technologies can be found in recent publications from our lab (Druliner et al., 2013; Sexton et al., 2014). We found that nucleosome redistributions displayed chromosome specific nucleosome occupancy. This resource can be used to map nucleosome distributions in a variety of biological contexts.

3.
Genome Res ; 24(2): 251-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24310001

RESUMO

Nucleosome occupancy plays a key role in regulating access to eukaryotic genomes. Although various chromatin regulatory complexes are known to regulate nucleosome occupancy, the role of DNA sequence in this regulation remains unclear, particularly in mammals. To address this problem, we measured nucleosome distribution at high temporal resolution in human cells at hundreds of genes during the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV). We show that nucleosome redistribution peaks at 24 h post-KSHV reactivation and that the nucleosomal redistributions are widespread and transient. To clarify the role of DNA sequence in these nucleosomal redistributions, we compared the genes with altered nucleosome distribution to a sequence-based computer model and in vitro-assembled nucleosomes. We demonstrate that both the predicted model and the assembled nucleosome distributions are concordant with the majority of nucleosome redistributions at 24 h post-KSHV reactivation. We suggest a model in which loci are held in an unfavorable chromatin architecture and "spring" to a transient intermediate state directed by DNA sequence information. We propose that DNA sequence plays a more considerable role in the regulation of nucleosome positions than was previously appreciated. The surprising findings that nucleosome redistributions are widespread, transient, and DNA-directed shift the current perspective regarding regulation of nucleosome distribution in humans.


Assuntos
Cromatina/genética , Herpesvirus Humano 8/genética , Nucleossomos/genética , Ativação Viral/genética , Simulação por Computador , Genoma Humano , Humanos , Modelos Genéticos , Análise de Sequência de DNA
4.
Cell Cycle ; 12(10): 1536-43, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23598721

RESUMO

The development and progression of lung adenocarcinoma, one of the most common cancers, is driven by the interplay of genetic and epigenetic changes and the role of chromatin structure in malignant transformation remains poorly understood. We used systematic nucleosome distribution and chromatin accessibility microarray mapping platforms to analyze the genome-wide chromatin structure from normal tissues and from primary lung adenocarcinoma of different grades and stages. We identified chromatin-based patterns across different patients with lung adenocarcinoma of different cancer grade and stage. Low-grade cancers had nucleosome distributions very different compared with the corresponding normal tissue but had nearly identical chromatin accessibility. Conversely, nucleosome distributions of high-grade cancers showed few differences. Substantial disruptions in chromosomal accessibility were seen in a patient with a high-grade and high-stage tumor. These data imply that chromatin structure changes during the progression of lung adenocarcinoma. We have therefore developed a model in which low-grade lung adenocarcinomas are linked to changes in nucleosome distributions, whereas higher-grade tumors are linked to large-scale chromosomal changes. These results provide a foundation for the development of a comprehensive framework linking the general and locus-specific roles of chromatin structure to lung cancer progression. We propose that this strategy has the potential to identify a new class of chromatin-based diagnostic, prognostic and therapeutic markers in cancer progression.


Assuntos
Adenocarcinoma/metabolismo , Cromatina/metabolismo , Neoplasias Pulmonares/metabolismo , Adenocarcinoma/patologia , Cromatina/química , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Gradação de Tumores , Estadiamento de Neoplasias , Nucleossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA