Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Oncol ; 14: 1411295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915368

RESUMO

Introduction: Breast cancer is the second most diagnosed cancer, as well as the primary cause of cancer death in women worldwide. Of the different breast cancer subtypes, triple-negative breast cancer (TNBC) is particularly aggressive and is associated with poor prognosis. Black women are two to three times more likely to be diagnosed with TNBCs than white women. Recent experimental evidence suggests that basal-like TNBCs may derive from luminal cells which acquire basal characteristics through phenotypic plasticity, a newly recognized hallmark of cancer. Whether chemical exposures can promote phenotypic plasticity in breast cells is poorly understood. Methods: To investigate further, we developed a high-content immunocytochemistry assay using normal human breast cells to test whether chemical exposures can impact luminal/basal plasticity by unbiased quantification of keratin 14 (KRT14), a basal-myoepithelial marker; keratin 8 (KRT8), a luminal-epithelial marker; and Hoechst 33342, a DNA marker. Six cell lines established from healthy tissue from donors to the Susan G. Komen Normal Tissue Bank were exposed for 48 hours to three different concentrations (0.1µM, 1µM, and 10µM) of eight ubiquitous chemicals (arsenic, BPA, BPS, cadmium, copper, DDE, lead, and PFNA), with documented exposure disparities in US Black women, in triplicate. Automated fluorescence image quantification was performed using Cell Profiler software, and a random-forest classifier was trained to classify individual cells as KRT8 positive, KRT14 positive, or hybrid (both KRT8 and KRT14 positive) using Cell Profiler Analyst. Results and discussion: Results demonstrated significant concentration-dependent increases in hybrid populations in response to BPA, BPS, DDE, and PFNA. The increase in hybrid populations expressing both KRT14 and KRT8 is indicative of a phenotypically plastic progenitor-like population in line with known theories of carcinogenesis. Furthermore, BPA, BPS, DDE, and copper produced significant increases in cell proliferation, which could be indicative of a more malignant phenotype. These results further elucidate the relationship between chemical exposure and breast phenotypic plasticity and highlight potential environmental factors that may impact TNBC risk.

2.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853980

RESUMO

Members of the Bacteroidota compose a large portion of the human gut microbiota, contributing to overall gut health via the degradation of various polysaccharides. This process is facilitated by lipoproteins, globular proteins anchored to the cell surface by a lipidated N-terminal cysteine. Despite their importance, lipoprotein synthesis by these bacteria is understudied. In E. coli, the α-amino linked lipid of lipoproteins is added by the lipoprotein N-acyltransferase Lnt. Herein, we have identified a protein distinct from Lnt responsible for the same process in Bacteroides, named lipoprotein N-acyltransferase in Bacteroides (Lnb). Deletion of Lnb yields cells that synthesize diacylated lipoproteins, with impacts on cell viability and morphology, growth on polysaccharides, and protein composition of membranes and outer membrane vesicles (OMVs). Our results not only challenge the accepted paradigms of lipoprotein biosynthesis in Gram-negative bacteria, but also support the establishment of a new family of lipoprotein N-acyltransferases.

3.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746407

RESUMO

There are a substantial number of chemicals to which individuals in the general population are exposed which have putative, but still poorly understood, links to breast cancer. Cell Painting is a high-content imaging-based in vitro assay that allows for rapid and unbiased measurements of the concentration-dependent effects of chemical exposures on cellular morphology. We optimized the Cell Painting assay and measured the effect of exposure to 16 human exposure relevant chemicals, along with 21 small molecules with known mechanisms of action, for 48 hours in non-tumorigenic mammary epithelial cells, the MCF10A cell line. Through unbiased imaging analyses using CellProfiler, we quantified 3042 morphological features across approximately 1.2 million cells. We used benchmark concentration modeling to quantify significance and dose-dependent directionality to identify morphological features conserved across chemicals and find features that differentiate the effects of toxicants from one another. Benchmark concentrations were compared to chemical exposure biomarker concentration measurements from the National Health and Nutrition Examination Survey to assess which chemicals induce morphological alterations at human-relevant concentrations. Morphometric fingerprint analysis revealed similar phenotypes between small molecules and prioritized NHANES-toxicants guiding further investigation. A comparison of feature fingerprints via hypergeometric analysis revealed significant feature overlaps between chemicals when stratified by compartment and stain. One such example was the similarities between a metabolite of the organochlorine pesticide DDT (p,p'-DDE) and an activator of canonical Wnt signaling CHIR99201. As CHIR99201 is a known Wnt pathway activator and its role in ß-catenin translocation is well studied, we studied the translocation of ß-catenin following p'-p' DDE exposure in an orthogonal high-content imaging assay. Consistent with activation of Wnt signaling, low dose p',p'-DDE (25nM) significantly enhances the nuclear translocation of ß-catenin. Overall, these findings highlight the ability of Cell Painting to enhance mode-of-action studies for toxicants which are common exposures in our environment but have previously been incompletely characterized with respect to breast cancer risk.

4.
ACS Nano ; 18(15): 10439-10453, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567994

RESUMO

The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.


Assuntos
Nanopartículas , Neoplasias , Vacinas , Animais , Camundongos , Neoplasias/terapia , Adjuvantes Imunológicos , Imunoterapia/métodos , Nanopartículas/química
5.
J Virol ; 97(12): e0127623, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37975674

RESUMO

ABSTRACT: Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain unclear. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top four genes identified in our screen encode components of the same type I interferon (IFN-I) signaling complex­IFNAR1, IFNAR2, JAK1, and TYK2. The fifth gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response in both Calu-3 cells and iPSC-derived type 2 alveolar epithelial cells. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.


Assuntos
COVID-19 , Células Epiteliais , Interferon Tipo I , Pulmão , Humanos , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Interferon Tipo I/imunologia , Pulmão/patologia , Pulmão/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Linhagem Celular , Proliferação de Células
6.
SLAS Discov ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37527729

RESUMO

Diabetes poses a global health crisis affecting individuals across age groups and backgrounds, with a prevalence estimate of 700 million people worldwide by 2045. Current therapeutic strategies primarily rely on insulin therapy or hypoglycemic agents, which fail to address the root cause of the disease - the loss of pancreatic insulin-producing beta-cells. Therefore, bioassays that recapitulate intact islets are needed to enable drug discovery for beta-cell replenishment, protection from beta-cell loss, and islet-cell interactions. Standard cancer insulinoma beta-cell lines MIN6 and INS-1 have been used to interrogate beta-cell metabolic pathways and function but are not suitable for studying proliferative effects. Screening using primary human/rodent intact islets offers a higher level of physiological relevance to enhance diabetes drug discovery and development. However, the 3-dimensionality of intact islets have presented challenges in developing robust, high-throughput assays to detect beta-cell proliferative effects. Established methods rely on either dissociated islet cells plated in 2D monolayer cultures for imaging or reconstituted pseudo-islets formed in round bottom plates to achieve homogeneity. These approaches have significant limitations due to the islet cell dispersion process. To address these limitations, we have developed a robust, intact ex vivo pancreatic islet bioassay in 384-well format that is capable of detecting diabetes-relevant endpoints including beta-cell proliferation, chemoprotection, and islet spatial morphometrics.

7.
Proc Natl Acad Sci U S A ; 120(30): e2221809120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459541

RESUMO

Early in the COVID-19 pandemic, data suggested that males had a higher risk of developing severe disease and that androgen deprivation therapy might be associated with protection. Combined with the fact that TMPRSS2 (transmembrane serine protease 2), a host entry factor for the SARS-CoV-2 virus, was a well-known androgen-regulated gene, this led to an upsurge of research investigating androgen receptor (AR)-targeting drugs. Proxalutamide, an AR antagonist, was shown in initial clinical studies to benefit COVID-19 patients; however, further validation is needed as one study was retracted. Due to continued interest in proxalutamide, which is in phase 3 trials, we examined its ability to impact SARS-CoV-2 infection and downstream inflammatory responses. Proxalutamide exerted similar effects as enzalutamide, an AR antagonist prescribed for advanced prostate cancer, in decreasing AR signaling and expression of TMPRSS2 and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. However, proxalutamide led to degradation of AR protein, which was not observed with enzalutamide. Proxalutamide inhibited SARS-CoV-2 infection with an IC50 value of 97 nM, compared to 281 nM for enzalutamide. Importantly, proxalutamide inhibited infection by multiple SARS-CoV-2 variants and synergized with remdesivir. Proxalutamide protected against cell death in response to tumor necrosis factor alpha and interferon gamma, and overall survival of mice was increased with proxalutamide treatment prior to cytokine exposure. Mechanistically, we found that proxalutamide increased levels of NRF2, an essential transcription factor that mediates antioxidant responses, and decreased lung inflammation. These data provide compelling evidence that proxalutamide can prevent SARS-CoV-2 infection and cytokine-induced lung damage, suggesting that promising clinical data may emerge from ongoing phase 3 trials.


Assuntos
COVID-19 , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , SARS-CoV-2/metabolismo , Androgênios , Antagonistas de Androgênios/uso terapêutico , Pandemias , Peptidil Dipeptidase A/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Interferon gama/uso terapêutico
8.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443734

RESUMO

Neural tube defects (NTDs), including anencephaly and spina bifida, are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or severe lifelong complications (spina bifida). Despite hundreds of genetic mouse models of neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals, such as antiseizure medications, have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette cortical organoid (SOSR-COs) system, we have developed a high-throughput image analysis pipeline for evaluating the SOSR-CO structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. GSK3ß and HDAC inhibitors caused similar lumen expansion; however, RNA sequencing suggests VPA does not inhibit GSK3ß at these concentrations. The knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen, as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction, suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity.


Assuntos
Anencefalia , Defeitos do Tubo Neural , Disrafismo Espinal , Gravidez , Feminino , Humanos , Camundongos , Animais , Ácido Valproico/farmacologia , Anencefalia/complicações , Anencefalia/genética , Glicogênio Sintase Quinase 3 beta/genética , Camundongos Knockout , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Encéfalo/patologia , Proteínas dos Microfilamentos
9.
Microbiol Spectr ; 11(3): e0087323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154756

RESUMO

By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection. IMPORTANCE BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.


Assuntos
Vírus BK , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Adulto , Microscopia , Proteínas Virais , Antivirais
10.
J Virol ; 96(22): e0085522, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342297

RESUMO

Human norovirus (HNoV) accounts for one-fifth of all acute viral gastroenteritis worldwide and an economic burden of ~$60 billion globally. The lack of treatment options against HNoV is in part due to the lack of cultivation systems. Recently, a model of infection in biopsy-derived human intestinal enteroids (HIE) has been described: 3D-HIE are first dispersed in 2D-monolayers and differentiated prior to infection, resulting in a labor-intensive, time-consuming procedure. Here, we present an alternative protocol for HNoV infection of 3D-HIE. We found that 3D-HIE differentiated as efficiently as 2D-monolayers. In addition, immunofluorescence-based quantification of UEA-1, a lectin that stains the villus brush border, revealed that ~80% of differentiated 3D-HIE spontaneously undergo polarity inversion, allowing for viral infection without the need for microinjection. Infection with HNoV GII.4-positive stool samples attained a fold-increase over inoculum of ~2 Log10 at 2 days postinfection or up to 3.5 Log10 when ruxolitinib, a JAK1/2-inhibitor, was added. Treatment of GII.4-infected 3D-HIE with the polymerase inhibitor 2'-C-Methylcytidine (2CMC) and other antivirals showed a reduction in viral infection, suggesting that 3D-HIE are an excellent platform to test anti-infectives. The transcriptional host response to HNoV was then investigated by RNA sequencing in infected versus uninfected 3D-HIE in the presence of ruxolitinib to focus on virus-associated signatures while limiting interferon-stimulated gene signatures. The analysis revealed upregulated hormone and neurotransmitter signal transduction pathways and downregulated glycolysis and hypoxia-response pathways upon HNoV infection. Overall, 3D-HIE have proven to be a highly robust model to study HNoV infection, screen antivirals, and to investigate the host response to HNoV infection. IMPORTANCE The human norovirus (HNoV) clinical and socio-economic impact calls for immediate action in the development of anti-infectives. Physiologically relevant in vitro models are hence needed to study HNoV biology, tropism, and mechanisms of viral-associated disease, and also as a platform to identify antiviral agents. Biopsy-derived human intestinal enteroids are a biomimetic of the intestinal epithelium and were recently described as a model that supports HNoV infection. However, the established protocol is time-consuming and labor-intensive. Therefore, we sought to develop a simplified and robust alternative model of infection in 3D enteroids that undergoes differentiation and spontaneous polarity inversion. Advantages of this model are the shorter experimental time, better infection yield, and spatial integrity of the intestinal epithelium. This model is potentially suitable for the study of other pathogens that infect intestinal cells from the apical surface but also for unraveling the interactions between intestinal epithelium and indigenous bacteria of the human microbiome.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Norovirus/fisiologia , Pirazóis , Antivirais/farmacologia
11.
Vaccines (Basel) ; 10(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36016172

RESUMO

Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection in vitro, generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern. In this study, we used high-content imaging-based immunofluorescence assays in two different cell models to assess these limitations and evaluate the potential for using niclosamide as a COVID-19 antiviral. We show that despite promising preliminary reports, the antiviral efficacy of niclosamide overlaps with its cytotoxicity giving it a poor in vitro selectivity index for anti-SARS-CoV-2 inhibition. We also show that niclosamide has significantly variable potency against the different SARS-CoV-2 variants of concern and is most potent against variants with enhanced cell-to-cell spread including the B.1.1.7 (alpha) variant. Finally, we report the activity of 33 niclosamide analogs, several of which have reduced cytotoxicity and increased potency relative to niclosamide. A preliminary structure-activity relationship analysis reveals dependence on a protonophore for antiviral efficacy, which implicates nonspecific endolysosomal neutralization as a dominant mechanism of action. Further single-cell morphological profiling suggests niclosamide also inhibits viral entry and cell-to-cell spread by syncytia. Altogether, our results suggest that niclosamide is not an ideal candidate for the treatment of COVID-19, but that there is potential for developing improved analogs with higher clinical translational potential in the future.

12.
bioRxiv ; 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35860224

RESUMO

Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection in vitro , generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern. In this study, we used high-content imaging-based immunofluorescence assays in two different cell models to assess these limitations and evaluate the potential for using niclosamide as a COVID-19 antiviral. We show that despite promising preliminary reports, the antiviral efficacy of niclosamide overlaps with its cytotoxicity giving it a poor in vitro selectivity index for anti-SARS-CoV-2 inhibition. We also show that niclosamide has significantly variable potency against the different SARS-CoV-2 variants of concern and is most potent against variants with enhanced cell-to-cell spread including B.1.1.7. Finally, we report the activity of 33 niclosamide analogs, several of which have reduced cytotoxicity and increased potency relative to niclosamide. A preliminary structure-activity relationship analysis reveals dependence on a protonophore for antiviral efficacy, which implicates nonspecific endolysosomal neutralization as a dominant mechanism of action. Further single-cell morphological profiling suggests niclosamide also inhibits viral entry and cell-to-cell spread by syncytia. Altogether, our results suggest that niclosamide is not an ideal candidate for the treatment of COVID-19, but that there is potential for developing improved analogs with higher clinical translational potential in the future. Importance: There is still an urgent need for effective anti-SARS-CoV-2 therapeutics due to waning vaccine efficacy, the emergence of variants of concern, and limited efficacy of existing antivirals. One potential therapeutic option is niclosamide, an FDA approved anthelmintic compound that has shown promising anti-SARS-CoV-2 activity in cell-based assays. Unfortunately, there are significant barriers for the clinical utility of niclosamide as a COVID-19 therapeutic. Our work emphasizes these limitations by showing that niclosamide has high cytotoxicity at antiviral concentrations, variable potency against variants of concern, and significant polypharmacology as a result of its activity as a nonspecific protonophore. Some of these clinical limitations can be mitigated, however, through structural modifications to the niclosamide scaffold, which we demonstrate through a preliminary structure activity relationship analysis. Overall, we show that niclosamide is not a suitable candidate for the treatment of COVID-19, but that structural analogs with improved drug properties may have higher clinical-translational potential.

13.
J Am Chem Soc ; 144(17): 7686-7692, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438481

RESUMO

Moroidin is a bicyclic plant octapeptide with tryptophan side-chain cross-links, originally isolated as a pain-causing agent from the Australian stinging tree Dendrocnide moroides. Moroidin and its analog celogentin C, derived from Celosia argentea, are inhibitors of tubulin polymerization and, thus, lead structures for cancer therapy. However, low isolation yields from source plants and challenging organic synthesis hinder moroidin-based drug development. Here, we present biosynthesis as an alternative route to moroidin-type bicyclic peptides and report that they are ribosomally synthesized and posttranslationally modified peptides (RiPPs) derived from BURP-domain peptide cyclases in plants. By mining 793 plant transcriptomes for moroidin core peptide motifs within BURP-domain precursor peptides, we identified a moroidin cyclase in Japanese kerria, which catalyzes the installation of the tryptophan-indole-centered macrocyclic bonds of the moroidin bicyclic motif in the presence of cupric ions. Based on the kerria moroidin cyclase, we demonstrate the feasibility of producing diverse moroidins including celogentin C in transgenic tobacco plants and report specific cytotoxicity of celogentin C against a lung adenocarcinoma cancer cell line. Our study sets the stage for future biosynthetic development of moroidin-based therapeutics and highlights that mining plant transcriptomes can reveal bioactive cyclic peptides and their underlying cyclases from new source plants.


Assuntos
Peptídeos Cíclicos , Triptofano , Austrália , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos Cíclicos/química , Plantas , Processamento de Proteína Pós-Traducional , Triptofano/metabolismo
14.
Nat Chem Biol ; 18(1): 18-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34811516

RESUMO

Many bioactive plant cyclic peptides form side-chain-derived macrocycles. Lyciumins, cyclic plant peptides with tryptophan macrocyclizations, are ribosomal peptides (RiPPs) originating from repetitive core peptide motifs in precursor peptides with plant-specific BURP (BNM2, USP, RD22 and PG1beta) domains, but the biosynthetic mechanism for their formation has remained unknown. Here, we characterize precursor-peptide BURP domains as copper-dependent autocatalytic peptide cyclases and use a combination of tandem mass spectrometry-based metabolomics and plant genomics to systematically discover five BURP-domain-derived plant RiPP classes, with mono- and bicyclic structures formed via tryptophans and tyrosines, from botanical collections. As BURP-domain cyclases are scaffold-generating enzymes in plant specialized metabolism that are physically connected to their substrates in the same polypeptide, we introduce a bioinformatic method to mine plant genomes for precursor-peptide-encoding genes by detection of repetitive substrate domains and known core peptide features. Our study sets the stage for chemical, biosynthetic and biological exploration of plant RiPP natural products from BURP-domain cyclases.


Assuntos
Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Catálise , Permeabilidade da Membrana Celular , Ciclização , Genoma de Planta , Espectrometria de Massas em Tandem
15.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546975

RESUMO

In this study, we demonstrate that forkhead box F1 (FOXF1), a mesenchymal transcriptional factor essential for lung development, was retained in a topographically distinct mesenchymal stromal cell population along the bronchovascular space in an adult lung and identify this distinct subset of collagen-expressing cells as key players in lung allograft remodeling and fibrosis. Using Foxf1-tdTomato BAC (Foxf1-tdTomato) and Foxf1-tdTomato Col1a1-GFP mice, we show that Lin-Foxf1+ cells encompassed the stem cell antigen 1+CD34+ (Sca1+CD34+) subset of collagen 1-expressing mesenchymal cells (MCs) with a capacity to generate CFU and lung epithelial organoids. Histologically, FOXF1-expressing MCs formed a 3D network along the conducting airways; FOXF1 was noted to be conspicuously absent in MCs in the alveolar compartment. Bulk and single-cell RNA-Seq confirmed distinct transcriptional signatures of Foxf1+ and Foxf1- MCs, with Foxf1-expressing cells delineated by their high expression of the transcription factor glioma-associated oncogene 1 (Gli1) and low expression of integrin α8 (Itga), versus other collagen-expressing MCs. FOXF1+Gli1+ MCs showed proximity to Sonic hedgehog-expressing (Shh-expressing) bronchial epithelium, and mesenchymal expression of Foxf1 and Gli1 was found to be dependent on paracrine Shh signaling in epithelial organoids. Using a murine lung transplant model, we show dysregulation of epithelial-mesenchymal SHH/GLI1/FOXF1 crosstalk and expansion of this specific peribronchial MC population in chronically rejecting fibrotic lung allografts.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto/metabolismo , Transplante de Pulmão , Células-Tronco Mesenquimais/metabolismo , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/metabolismo , Aloenxertos , Animais , Doença Crônica , Fatores de Transcrição Forkhead/genética , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Transgênicos , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia
16.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34413211

RESUMO

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Assuntos
Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Lactoferrina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Células Epiteliais , Heparitina Sulfato/antagonistas & inibidores , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Hepatócitos , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Células Vero , Tratamento Farmacológico da COVID-19
17.
Clin Cancer Res ; 27(17): 4923-4936, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145028

RESUMO

PURPOSE: Lineage plasticity in prostate cancer-most commonly exemplified by loss of androgen receptor (AR) signaling and a switch from a luminal to alternate differentiation program-is now recognized as a treatment resistance mechanism. Lineage plasticity is a spectrum, but neuroendocrine prostate cancer (NEPC) is the most virulent example. Currently, there are limited treatments for NEPC. Moreover, the incidence of treatment-emergent NEPC (t-NEPC) is increasing in the era of novel AR inhibitors. In contradistinction to de novo NEPC, t-NEPC tumors often express the AR, but AR's functional role in t-NEPC is unknown. Furthermore, targetable factors that promote t-NEPC lineage plasticity are also unclear. EXPERIMENTAL DESIGN: Using an integrative systems biology approach, we investigated enzalutamide-resistant t-NEPC cell lines and their parental, enzalutamide-sensitive adenocarcinoma cell lines. The AR is still expressed in these t-NEPC cells, enabling us to determine the role of the AR and other key factors in regulating t-NEPC lineage plasticity. RESULTS: AR inhibition accentuates lineage plasticity in t-NEPC cells-an effect not observed in parental, enzalutamide-sensitive adenocarcinoma cells. Induction of an AR-repressed, lineage plasticity program is dependent on activation of the transcription factor E2F1 in concert with the BET bromodomain chromatin reader BRD4. BET inhibition (BETi) blocks this E2F1/BRD4-regulated program and decreases growth of t-NEPC tumor models and a subset of t-NEPC patient tumors with high activity of this program in a BETi clinical trial. CONCLUSIONS: E2F1 and BRD4 are critical for activating an AR-repressed, t-NEPC lineage plasticity program. BETi is a promising approach to block this program.


Assuntos
Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Fator de Transcrição E2F1/efeitos dos fármacos , Fator de Transcrição E2F1/fisiologia , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Proteínas/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Masculino
18.
Sci Immunol ; 6(58)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827897

RESUMO

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Assuntos
COVID-19/metabolismo , Ativação do Complemento , Células Epiteliais/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , SARS-CoV-2/metabolismo , COVID-19/patologia , Linhagem Celular Tumoral , Complemento C3a/metabolismo , Fator B do Complemento/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/patologia
19.
Proc Natl Acad Sci U S A ; 118(1): e2021450118, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33310900

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.

20.
Int J Infect Dis ; 100: 224-229, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32891736

RESUMO

OBJECTIVES: There are currently no studies that have examined whether one dosage can be uniformly applied to different respirator types to effectively decontaminate SARS-CoV-2 on N95 filtering facepiece respirators (FFRs). Health care workers have been using this disinfection method during the pandemic. Our objective was to determine the effect of UVC on SARS-CoV-2 inoculated N95 respirators and whether this was respirator material/model type dependent. METHODS: Four different locations (facepiece and strap) on five different N95 FFR models (3M 1860, 8210, 8511, 9211; Moldex 1511) were inoculated with a 10 µL drop of SARS-CoV-2 viral stock (8 × 107 TCID50/mL). The outside-facing and wearer-facing surfaces of the respirators were each irradiated with a dose of 1.5 J/cm2 UVC (254 nm). Viable SARS-CoV-2 was quantified by a median tissue culture infectious dose assay (TCID50). RESULTS: UVC delivered using a dose of 1.5 J/cm2, to each side, was an effective method of decontamination for the facepieces of 3M 1860 and Moldex 1511, and for the straps of 3M 8210 and the Moldex 1511. CONCLUSION: This dose is an appropriate decontamination method to facilitate the reuse of respirators for healthcare personnel when applied to specific models/materials. Also, some straps may require additional disinfection to maximize the safety of frontline workers. Implementation of widespread UVC decontamination methods requires careful consideration of model, material type, design, and fit-testing following irradiation.


Assuntos
Descontaminação/métodos , Máscaras/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/efeitos da radiação , Raios Ultravioleta , Ventiladores Mecânicos/virologia , Desinfecção/métodos , Relação Dose-Resposta à Radiação , Reutilização de Equipamento , Humanos , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA