Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 22(4): 497-509, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790474

RESUMO

Classic major histocompatibility complex class I (MHC-I) presentation relies on shuttling cytosolic peptides into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). Viruses disable TAP to block MHC-I presentation and evade cytotoxic CD8+ T cells. Priming CD8+ T cells against these viruses is thought to rely solely on cross-presentation by uninfected TAP-functional dendritic cells. We found that protective CD8+ T cells could be mobilized during viral infection even when TAP was absent in all hematopoietic cells. TAP blockade depleted the endosomal recycling compartment of MHC-I molecules and, as such, impaired Toll-like receptor-regulated cross-presentation. Instead, MHC-I molecules accumulated in the ER-Golgi intermediate compartment (ERGIC), sequestered away from Toll-like receptor control, and coopted ER-SNARE Sec22b-mediated vesicular traffic to intersect with internalized antigen and rescue cross-presentation. Thus, when classic MHC-I presentation and endosomal recycling compartment-dependent cross-presentation are impaired in dendritic cells, cell-autonomous noncanonical cross-presentation relying on ERGIC-derived MHC-I counters TAP dysfunction to nevertheless mediate CD8+ T cell priming.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Modelos Animais de Doenças , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Feminino , Complexo de Golgi/imunologia , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/patogenicidade , Ativação Linfocitária , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/genética
2.
Biochim Biophys Acta ; 1850(3): 449-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24923865

RESUMO

BACKGROUND: ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. SCOPE OF REVIEW: The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. MAJOR CONCLUSIONS: Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. GENERAL SIGNIFICANCE: Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Imunidade Adaptativa/imunologia , Apresentação de Antígeno/imunologia , Peptídeos/imunologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/imunologia , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Humanos , Modelos Moleculares , Peptídeos/metabolismo , Conformação Proteica
3.
Cell ; 158(3): 506-21, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083866

RESUMO

Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.


Assuntos
Apresentação de Antígeno , Endossomos/metabolismo , Fagossomos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Tecido Linfoide , Camundongos , Ovalbumina/imunologia , Fagocitose , Fosforilação , Transporte Proteico , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Receptores Toll-Like/imunologia , Proteínas rab de Ligação ao GTP/metabolismo
4.
FEBS Lett ; 587(6): 810-7, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23416293

RESUMO

The Saccharomyces cerevisiae AAA+ protein Hsp104 and its Escherichia coli counterpart ClpB cooperate with Hsp70 chaperones to refold aggregated proteins and fragment prion fibrils. Hsp104/ClpB activity is regulated by interaction of the M-domain with the first ATPase domain (AAA-1), controlling ATP turnover and Hsp70 cooperation. Guanidinium hydrochloride (GdnHCl) inhibits Hsp104/ClpB activity, leading to prion curing. We show that GdnHCl binding exerts dual effects on Hsp104/ClpB. First, GdnHCl strengthens M-domain/AAA-1 interaction, stabilizing Hsp104/ClpB in a repressed conformation and abrogating Hsp70 cooperation. Second, GdnHCl inhibits continuous ATP turnover by AAA-1. These findings provide the mechanistic basis for prion curing by GdnHCl.


Assuntos
Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Guanidina/farmacologia , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/antagonistas & inibidores , Príons/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Endopeptidase Clp , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Guanidina/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Luciferases/genética , Microscopia de Fluorescência , Príons/metabolismo , Ligação Proteica , Desnaturação Proteica , Domínios e Motivos de Interação entre Proteínas , Redobramento de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Microbiol ; 87(5): 1013-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23289512

RESUMO

The multicomponent type VI secretion system (T6SS) mediates the transport of effector proteins by puncturing target membranes. T6SSs are suggested to form a contractile nanomachine, functioning similar to the cell-puncturing device of tailed bacteriophages. The T6SS members VipA/VipB form tubular complexes and are predicted to function in analogy to viral tail sheath proteins by providing the energy for secretion via contraction. The ATPase ClpV disassembles VipA/VipB tubules in vitro, but the physiological relevance of tubule disintegration remained unclear. Here, we show that VipA/VipB tubules localize near-perpendicular to the inner membrane of Vibrio cholerae cells and exhibit repetitive cycles of elongation, contraction and disassembly. VipA/VipB tubules are decorated by ClpV in vivo and become static in ΔclpV cells, indicating that ClpV is required for tubule removal. VipA/VipB tubules mislocalize in ΔclpV cells and exhibit a reduced frequency of tubule elongation, indicating that ClpV also suppresses the spontaneous formation of contracted, non-productive VipA/VipB tubules. ClpV activity is restricted to the contracted state of VipA/VipB, allowing formation of functional elongated tubules at a T6SS assembly. Targeting of an unrelated ATPase to VipA/VipB is sufficient to replace ClpV function in vivo, suggesting that ClpV activity is autonomously regulated by VipA/VipB conformation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Vibrio cholerae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transporte Proteico , Vibrio cholerae/química , Vibrio cholerae/enzimologia , Vibrio cholerae/genética
6.
Nat Struct Mol Biol ; 19(12): 1347-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23160352

RESUMO

Bacteria, fungi and plants rescue aggregated proteins using a powerful bichaperone system composed of an Hsp70 chaperone and an Hsp100 AAA+ disaggregase. In Escherichia coli, the Hsp70 chaperone DnaK binds aggregates and targets the disaggregase ClpB to the substrate. ClpB hexamers use ATP to thread substrate polypeptides through the central pore, driving disaggregation. How ClpB finds DnaK and regulates threading remains unclear. To dissect the disaggregation mechanism, we separated these steps using primarily chimeric ClpB-ClpV constructs that directly recognize alternative substrates, thereby obviating DnaK involvement. We show that ClpB has low intrinsic disaggregation activity that is normally repressed by the ClpB middle (M) domain. In the presence of aggregate, DnaK directly binds M-domain motif 2, increasing ClpB ATPase activity to unleash high ClpB threading power. Our results uncover a new function for Hsp70: the coupling of substrate targeting to AAA+ chaperone activation at aggregate surfaces.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA