Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 202: 116231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554685

RESUMO

Microplastic (MP) pollution poses a global concern, especially for benthic invertebrates. This one-month study investigated the accumulation of small MP polymers (polypropylene and polyester resin, 3-500 µm, 250 µg L-1) in benthic invertebrates and on one alga species. Results revealed species-specific preferences for MP size and type, driven by ingestion, adhesion, or avoidance behaviours. Polyester resin accumulated in Mytilus galloprovincialis, Chamelea gallina, Hexaplex trunculus, and Paranemonia cinerea, while polypropylene accumulated on Ulva rigida. Over time, MP accumulation decreased in count but not size, averaging 6.2 ± 5.0 particles per individual after a month. MP were mainly found inside of the organisms, especially in the gut, gills, and gonads and externally adherent MP ranged from 11 to 35 % of the total. Biochemical energy assessments after two weeks of MP exposure indicated energy gains for water column species but energy loss for sediment-associated species, highlighting the susceptibility of infaunal benthic communities to MP contamination.


Assuntos
Monitoramento Ambiental , Invertebrados , Microplásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Organismos Aquáticos , Ecossistema
2.
J Adv Res ; 56: 43-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36958586

RESUMO

INTRODUCTION: Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. OBJECTIVES: To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. METHODS: A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. RESULTS: AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•-) including peroxynitrite (ONOO-) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). CONCLUSION: This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.


Assuntos
Neoplasias , Prata , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Prata/farmacologia , Prata/uso terapêutico , Nitroprussiato/farmacologia , Nitroprussiato/uso terapêutico , Ácido Peroxinitroso/uso terapêutico , Peróxido de Hidrogênio/química , Neoplasias/tratamento farmacológico
3.
Int J Pharm ; 613: 121374, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34906647

RESUMO

Monoacylglycerol lipase (MAGL) is an emerging therapeutic target for cancer. It is involved in lipid metabolism and its inhibition impairs many hallmarks of cancer including cell proliferation, migration/invasion and tumor growth. For these reasons, our group has recently developed a potent reversible MAGL inhibitor (MAGL23), which showed promising anticancer activities. Here in, to improve its pharmacological properties, a nanoformulation based on nanocrystals coated with albumin was prepared for therapeutic applications. MAGL23 was solubilized by a nanocrystallization method with Pluronic F-127 as surfactant into an organic solvent and was recovered as nanocrystals in water after solvent evaporation. Finally, the solubilized nanocrystals were stabilized by human serum albumin to create a smart delivery carrier. An in-silico prediction (lipophilicity, structure at different pH and solubility in water), as well as experimental studies (solubility), have been performed to check the chemical properties of the inhibitor and nanocrystals. The solubility in water increases from less than 0.01 mg/mL (0.0008 mg/mL, predicted) up to 0.82 mg/mL in water. The formulated inhibitor maintained its potency in ovarian and colon cancer cell lines as the free drug. Furthermore, the system was thoroughly observed at each step of the solubilization process till the final formulation stage by different spectroscopic techniques and a comparative study was performed to check the effects of Pluronic F-127 and CTAB as surfactants. The formulated system is favorable to release the drug at physiological pH conditions (at pH 7.4, after 24 h, less than 20% of compound is released). In vivo studies have shown that albumin-complexed nanocrystals increase the therapeutic window of MAGL23 along with a favorable biodistribution. As per our knowledge, we are reporting the first ever nanoformulation of a MAGL inhibitor, which is promising as a therapeutic system where the MAGL enzyme is involved, especially for cancer therapeutic applications.


Assuntos
Monoacilglicerol Lipases , Monoglicerídeos , Inibidores Enzimáticos/farmacologia , Excipientes , Humanos , Monoacilglicerol Lipases/metabolismo , Distribuição Tecidual
4.
Mar Pollut Bull ; 174: 113279, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34959102

RESUMO

We assessed the presence and concentration of microplastics in fishes from the Northern Adriatic Sea on sale for human consumption. Microplastics were extracted from the digestive tract of 180 specimens, belonging to 6 different species (2 pelagic, and 4 demersal). Microplastics were identified through Nile red staining, and selected particles were analyzed by µ-Raman spectroscopy. The 47.8% of examined fish were found to contain microplastics (233 fragments). The mean concentration of microplastics in the 6 species ranged between 4.11 ± 2.85 items/individual in Adriatic soles, and 1.75 ± 0.71 items/individual in pilchards. Microplastics ranged in size between 0.054 mm and 0.765 mm. Polyethylene and polypropylene were the polymer types identified through µ-Raman spectroscopy. Despite our estimates are underestimations, these results are of particular concern, as the fish analyzed are consumed without being eviscerated, and the microplastics they contain are transferred directly to humans.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Humanos , Plásticos , Poluentes Químicos da Água/análise
5.
Environ Int ; 137: 105587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097803

RESUMO

Microplastic contamination of the benthic invertebrate fauna in Terra Nova Bay (Ross Sea, Antarctica) was determined. Twelve macrobenthic species, characterized by different feeding strategies, were selected at 3 sampling sites at increasing distance from the Italian Scientific Base (Mario Zucchelli, Camp Icarus, Adelie Cove). The 83% of the analyzed macrobenthic species contained microplastics (0.01-3.29 items mg-1). The size of the particles, measured by Feret diameter, ranged from 33 to 1000 µm with the highest relative abundance between 50 and 100 µm. Filter-feeders and grazers displayed values of microplastic contamination from 3 to 5 times higher than omnivores and predators, leading to the hypothesis that there is no evident bioaccumulation through the food web. The prevalent polymers identified by micro-FTIR were nylon (86%) and polyethylene (5%); other polymers identified in Antarctic benthos were polytetrafluoroethylene, polyoxymethylene, phenolic resin, polypropylene, polystyrene resin and XT polymer.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Regiões Antárticas , Baías , Monitoramento Ambiental , Invertebrados , Microplásticos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA