Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 90(4): 267-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081308

RESUMO

Tyrosinase is a target enzyme to be inhibited in order to reduce excessive melanin production and prevent typical age-related skin disorders. Essential oils are complex mixtures of volatile compounds, belonging mainly to monoterpenoids and sesquiterpenoids, which have been relatively little studied as tyrosinase inhibitors. Among the monoterpenoids, citral (a mixture of neral and geranial) is a fragrance compound in several essential oils that has shown interesting tyrosinase inhibitory activity. Although citral is listed as an allergen among the 26 fragrances in Annex III of the Cosmetics Directive 2003/15/EC, it can be safely used for the formulation of topical products in amounts that are not expected to cause skin sensitization, as shown by various commercially available products.The aim of this work was to evaluate two different formulations (oil/water emulsion, oily solution) containing a new combination of essential oils (Litsea cubeba, Pinus mugo, Cymbopogon winterianus) applied to the skin both in nonocclusive and partially occlusive modes. The blend is designed to reduce the concentration of citral to avoid potential skin reactions while taking advantage of the inhibitory activity of citral. Specifically, the amount of citral and other bioactive compounds (myrcene, citronellal) delivered through the skin was studied as a function of formulation and mode of application.The results show that an oil/water emulsion is preferable because it releases the bioactive compounds rapidly and minimizes their evaporative loss. In addition, semi-occluded conditions are required to prevent evaporation, resulting in higher availability of the bioactive compounds in viable skin.


Assuntos
Monoterpenos Acíclicos , Cymbopogon , Litsea , Óleos Voláteis , Pinus , Óleos Voláteis/farmacologia , Monofenol Mono-Oxigenase , Emulsões , Monoterpenos/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38113724

RESUMO

The wide range of applications of hemp products, together with the environmental benefits that come from hemp cultivation are driving up the market demand for Cannabis sativa L. plant. One of the main restrictions for hemp cultivation and marketing concerns the content of delta-9-tetrahydrocannabidiol (Δ9-THC), which is known to have psychotomimetic effect. If the recent growing of hemp market is beneficial by an economic and environmental point of view, it is necessary to develop reliable analytical methods for the chemical characterization of hemp products, to guarantee the safety of use for the customers. This study aimed to develop a simple ultrasound-assisted dispersive solid-liquid microextraction (UA-DSLME) method for the extraction of cannabinoids in hemp products, using eutectic solvents (ESs) as extraction material. Two types of ESs were compared: one prepared with a [Ch+][Br-]-modified salts as hydrogen bond acceptor and one based on natural terpenoids. The ultrasound-assisted dispersive solid-liquid microextraction method was optimized to be applied for the analysis of aerial parts of hemp collected before flowering, hemp inflorescences and a commercial sample called CBD oil, and proved to be robust and versatile. Under optimal conditions, only 100 µL of ES and 2 mL of water as co-solvent were used in the US-assisted extraction, before the analysis in the UHPLC-PDA system. The developed approach allowed to obtain the same chemical profile of conventional methods, while improving the greenness of the method and the enrichment of the marker analytes. To overcome the strong matrix effect for cannabinoids, a matrix-matched calibration was used. Blank matrices of the samples under study were easily obtained by performing an exhaustive extraction of the marker analytes in the hemp samples. These matrices were successfully used for validation, achieving accuracy values between 82% and 118%.


Assuntos
Canabidiol , Canabinoides , Cannabis , Microextração em Fase Líquida , Canabinoides/análise , Cannabis/química , Solventes/química , Canabidiol/análise , Água , Microextração em Fase Líquida/métodos
3.
Plants (Basel) ; 12(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37836202

RESUMO

Elettaria cardamomum (L.) Maton (Zingiberaceae family) is a plant traditionally used in Ayurvedic and Chinese medicine. In this work, the essential oil of E. cardamomum was found to inhibit the enzymes AChE (62.6% of inhibition, IC50 24.9 µg/mL) and BChE (55.8% of inhibition, IC50 25.9 µg/mL) by performing an in vitro colorimetric assay using the Ellman method. A bio-guided fractionation approach was used to isolate fractions/pure compounds that were tested individually to evaluate their activity. The resulting oxygenated fraction was found to be active against both AChE (percentage inhibition 42.8%) and BChE (percentage inhibition 63.7%), while the hydrocarbon fraction was inactive. The activity was attributed to a pool of oxygenated terpenes (α-terpinyl acetate, 1,8-cineole, linalool, linalyl acetate, and α-terpineol) that synergistically contributed to the overall activity of the essential oil.

4.
J Sep Sci ; 45(1): 94-112, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34897986

RESUMO

This review is an overview of the recent advances of gas chromatography in essential oil analysis; in particular, it focuses on both the new stationary phases and the advanced analytical methods and instrumentations. A paragraph is dedicated to ionic liquids as gas chromatography stationary phases, showing that, thanks to their peculiar selectivity, they can offer a complementary contribution to conventional stationary phases for the analysis of complex essential oils and the separation of critical pairs of components. Strategies to speed-up the analysis time, thus answering to the ever increasing request for routine essential oils quality control, are also discussed. Last but not least, a paragraph is dedicated to recent developments in column miniaturization in particular that based on microelectromechanical-system technology in a perspective of developing micro-gas chromatographic systems to optimize the energy consumption as well as the instrumentation dimensions. A number of applications in the essential oil field is also included.


Assuntos
Cromatografia Gasosa/métodos , Óleos Voláteis/química , Óleos de Plantas/química , Cromatografia Gasosa/instrumentação , Cromatografia Gasosa/tendências , Líquidos Iônicos/química , Estrutura Molecular
5.
Plants (Basel) ; 10(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34685911

RESUMO

As part of a project devoted to the phytochemical study of Ecuadorian biodiversity, new essential oils are systematically distilled and analysed. In the present work, Jungia rugosa Less (Asteraceae) has been selected and some wild specimens collected to investigate the volatile fraction. The essential oil, obtained from fresh leaves, was analysed for the first time in the present study. The chemical composition was determined by gas chromatography, coupled to mass spectrometry (GC-MS) for qualitative analysis, and to flame ionization detector (GC-FID) for quantitation. The calculation of relative response factors (RRF), based on combustion enthalpy, was carried out for each quantified component. Fifty-six compounds were identified and quantified in a 5% phenyl-polydimethylsiloxane non-polar column and 53 compounds in a polyethylene glycol polar column, including four undetermined compounds. The main feature of this essential oil was the exclusive sesquiterpenes content, both hydrocarbons (74.7% and 80.4%) and oxygenated (8.3% and 9.6%). Major constituents were: γ-curcumene (47.1% and 49.7%) and ß-sesquiphellandrene (17.0% and 17.9%), together with two abundant undetermined oxygenated sesquiterpenes, whose abundance was 6.7-7.2% and 4.7-3.3%, respectively. In addition, the essential oil was submitted to enantioselective evaluation in two ß-cyclodextrin-based enantioselective columns, determining the enantiomeric purity of a minor component (1S,2R,6R,7R,8R)-(+)-α-copaene. Finally, the AChE inhibition activity of the EO was evaluated in vitro. In conclusion, this volatile fraction is suitable for further investigation, according to two main lines: (a) the purification and structure elucidation of the major undetermined compounds, (b) a bio-guided fractionation, intended to investigate the presence of new sesquiterpene AChE inhibitors among the minor components.

6.
J Chromatogr A ; 1645: 462101, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33848659

RESUMO

Accurate, reliable, and informative mapping of untargeted and targeted components across many samples is here performed by combining off-line GC-Olfactometry (GC-O) and comprehensive two-dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry with variable ionization energy (TOF MS featuring Tandem Ionization™). In particular, untargeted and targeted (UT) features patterns are processed by chromatographic fingerprinting, giving differential priority to potent odorants' retention-times regions. Distinguishing peppermint essential oil (EO) from Piedmont (Italy - Mentha × piperita L. var. Italo-Mitcham - Menta di Pancalieri EO), with its unique sensory fingerprint (i.e., freshness and long-lasting sweetness), from high-quality peppermint EOs produced in other areas poses a great challenge. Chromatographic UT fingerprinting provided a great chemical dimensionality by mapping more than 350 peak-regions at 70 eV and 135 at 12 eV. From them, 95 components were identified and responses compared to available literature. Then, potent odorants, detected by GC-O using the aroma extraction dilution analysis (AEDA), were tracked over the chromatographic space and tentatively identified. With the highest flavor dilution (FD), 1,8-cineole (eucalyptus, fresh, camphoraceous); menthone (minty, herbaceous); and menthofuran (minty, musty, petroleum-like) were highlighted. Responsible for creamy and coumarinic notes were the diasteroisomers of (3,6)-dimethyl-4,5,6,7-tetrahydrobenzo[b]-furan-2(3H)-one (i.e., menthofurolactones), detected in higher relative abundance in Pancalieri EOs. By prioritizing the investigation of volatiles on higher LogFD retention regions, including 131 untargeted/targeted features, Pancalieri EOs were separately clustered from United States samples. Besides pre-targeted analytes, additional untargeted features were post-processed for identification within marker chemicals. Myrtenyl methyl ether, ethyl 3-methyl butanoate, propyl-2-methylbutanoate, and (E)-2-hexenal were putatively identified. Of the "unknown - knowns" with diagnostic roles, all metadata were collected including low energy spectra at 12 eV, which were found to be highly complementary to 70 eV spectra.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Mentha piperita/química , Óleos Voláteis/análise , Olfatometria/métodos , Aromatizantes/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise
7.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374888

RESUMO

A novel chemical profile essential oil, distilled from the aerial parts of Clinopodium taxifolium (Kunth) Govaerts (Lamiaceae), was analysed by Gas Chromatography-Mass Spectrometry (GC-MS, qualitative analysis) and Gas Chromatography with Flame Ionization Detector (GC-FID, quantitative analysis), with both polar and non-polar stationary phase columns. The chemical composition mostly consisted of sesquiterpenes and sesquiterpenoids (>70%), the main ones being (E)-ß-caryophyllene (17.8%), α-copaene (10.5%), ß-bourbonene (9.9%), δ-cadinene (6.6%), cis-cadina-1(6),4-diene (6.4%) and germacrene D (4.9%), with the non-polar column. The essential oil was then submitted to enantioselective GC analysis, with a diethyl-tert-butyldimethylsilyl-ß-cyclodextrin diluted in PS-086 chiral selector, resulting in the following enantiomeric excesses for the chiral components: (1R,5S)-(-)-α-thujene (67.8%), (1R,5R)-(+)-α-pinene (85.5%), (1S,5S)-(-)-ß-pinene (90.0%), (1S,5S)-(-)-sabinene (12.3%), (S)-(-)-limonene (88.1%), (S)-(+)-linalool (32.7%), (R)-(-)-terpinen-4-ol (9.3%), (S)-(-)-α-terpineol (71.2%) and (S)-(-)-germacrene D (89.0%). The inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) of C. taxifolium essential oil was then tested, resulting in selective activity against BChE with an IC50 value of 31.3 ± 3.0 µg/mL (positive control: donepezil, IC50 = 3.6 µg/mL).


Assuntos
Acetilcolinesterase/química , Butirilcolinesterase/química , Inibidores da Colinesterase/análise , Inibidores da Colinesterase/farmacologia , Lamiaceae/química , Óleos Voláteis/análise , Óleos Voláteis/farmacologia , Inibidores da Colinesterase/química , Equador , Técnicas In Vitro , Óleos Voláteis/química
8.
J Sep Sci ; 43(14): 2817-2826, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32329135

RESUMO

Hemp (Cannabis sativa L.) has become widely used in several sectors due to the presence of various bioactive compounds such as terpenes and cannabidiol. In general, terpenes and cannabidiol content is determined separately, which is time consuming. Thus, a fast gas chromatography with flame ionization detection method was validated for simultaneous determination of both terpenes and cannabidiol in hemp. The method enabled a rapid detection of 29 different terpenes and cannabidiol within a total analysis time of 16 min, with satisfactory sensitivity (limit of detection = 0.03-0.27 µg/mL, limit of quantitation = 0.10-0.89 µg/mL). The inter- and intraday precision (RSD) was <7.82 and <3.59%, respectively. Recoveries at two spiked concentration levels (low, 3.15 µg/mL; high, 20.0 µg/mL) were determined on both apical leaves (78.55-101.52%) and inflorescences (77.52-107.10%). The reproducibility (RSD) was <5.94 and <5.51% in apical leaves and inflorescences, respectively. The proposed and validated method is highly sensitive, robust, fast, and accurate for determination of the main terpenes and cannabidiol in hemp and could be routinely used for quality control.


Assuntos
Canabidiol/análise , Cannabis/química , Terpenos/análise , Cromatografia Gasosa , Ionização de Chama , Folhas de Planta/química
9.
J Chromatogr A ; 1619: 460969, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32089290

RESUMO

Room temperature ionic liquids (ILs) are well established stationary phases (SPs) for gas chromatography (GC) in several fields of applications because of their unique and tunable selectivity, low vapor pressure and volatility, high thermal stability (over 300 °C), and good chromatographic properties. This study is focused on an IL based on a phosphonium derivative (trihexyl(tetradecyl)phosphonium chloride, [P66614+] [Cl-]), previously shown to be suitable as a gas chromatographic SP because of its unique selectivity. In particular, it aims to establish the operative conditions to apply [P66614+][Cl-] to routine analysis of samples containing medium to high volatility analytes with different polarity, organic functional groups and chemical structure. In the first part, the study critically evaluates long term [P66614+][Cl-] column stability and maximum allowable operating temperatures (MAOT). The relatively low MAOT (210 °C) requires the adoption of a dedicated approach for analytes eluting above this temperature based on a suitable combination of efficiency and selectivity, and column characteristics (length, inner diameter and film thickness) and operative conditions. The performance of [P66614+][Cl-] as a GC SP have been validated through the Grob test, a model mixture of 41 compounds of different polarity, structure, and with different organic functional groups in the flavor and fragrance field, a standard mixture of 37 fatty acid methyl esters, some essential oils containing pairs or groups of compounds of different volatility critical to separate in particular peppermint, thyme, oregano, sandalwood and frankincense. The above approach has produced highly satisfactory separations with all of the samples investigated.


Assuntos
Cromatografia Gasosa/métodos , Líquidos Iônicos/química , Compostos Organofosforados/química , Aromatizantes/análise , Odorantes/análise , Óleos Voláteis/análise , Perfumes/análise , Santalum , Sesquiterpenos/análise , Temperatura
10.
Planta Med ; 86(6): 442-450, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32097972

RESUMO

Melaleuca alternifolia essential oil (tea tree oil) is widely used as an ingredient in skin care products because of its recognized biological activities. The European Scientific Committee on Consumer Products constantly promotes research and collection of data on both skin distribution and systemic exposure to tea tree oil components after the application of topical formulations. This study quantitatively evaluates permeation, skin layer distribution (stratum corneum, epidermis, and dermis), and release into the surrounding environment of bioactive tea tree oil markers (i.e., α-pinene, ß-pinene, α-terpinene, 1,8-cineole, γ-terpinene, 4-terpineol, α-terpineol) when a 5% tea tree oil formulation is applied at a finite dosing regimen. Permeation kinetics were studied in vitro on pig ear skin using conventional static glass Franz diffusion cells and cells ad hoc modified to monitor the release of markers into the atmosphere. Formulation, receiving phases, and skin layers were analyzed using a fully automatic and solvent-free method based on headspace solid-phase microextraction/gas chromatography-mass spectrometry. This approach affords, for the first time, to quantify tea tree oil markers in the different skin layers while avoiding using solvents and overcoming the existing methods based on solvent extraction. The skin layers contained less than 1% of each tea tree oil marker in total. Only oxygenated terpenes significantly permeated across the skin, while hydrocarbons were only absorbed at trace level. Substantial amounts of markers were released into the atmosphere.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Animais , Solventes , Suínos , Terpenos
11.
Molecules ; 25(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979066

RESUMO

Green pruning residues (GPRs) and leaves from 16 red and white Vitis vinifera L. cultivars from Piedmont (Italy) were studied. The investigated samples were extracted by ultrasound-assisted extraction optimized by an experimental design, and quali- and quantitatively analyzed by HPLC-PDA-MS/MS. GPRs and leaves show a similar polyphenolic pattern, with quercetin 3-O-glucuronide, caftaric acid, and quercetin 3-O-glucoside as the main components, although in variable proportions. The HPLC results were related to the antioxidant activity, measured as total phenolic content and through DPPH and ABTS assays with similar results. Colorimetric in vitro assays, offline combined with HPLC-PDA analysis, determine which compounds contribute to the antioxidant activity in terms of radical scavenging abilities. Valorization of GPRs is a potential source of natural compounds that could be of interest in the health field, increasing their economic value together with a positive effect on the environment.


Assuntos
Polifenóis/química , Vitis/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Colorimetria , Flavonoides/química , Flavonóis/química , Glucosídeos/química , Espectrometria de Massas em Tandem
12.
Plants (Basel) ; 8(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731417

RESUMO

The fresh leaves of Coreopsis triloba S.F. Blake, collected at Cerro Villonaco in Loja, Ecuador, were investigated with respect to their essential oil (EO). The chemical composition was determined qualitatively through gas chromatography coupled with mass spectrometry (GC-MS) and quantitatively by gas chromatography coupled with flame ionization (GC-FID), using relative response factors (RRF) based on the enthalpy of combustion. The essential oil contained between 92.5% and 93.4% of monoterpene hydrocarbons, with (E)-ß-ocimene being the main component (35.2-35.9%), followed by ß-phellandrene (24.6-25.0%), α-pinene (15.3-15.9%), myrcene (10.9-11.0%), sabinene (2.2-2.4%), (Z)-ß-ocimene (1.5%), and germacrene D (1.2-1.3%). The enantiomeric distribution of α-pinene, ß-pinene, limonene, and germacrene D was also determined. The main components responsible for the aroma were identified through aroma extract dilution analysis (AEDA), a gas chromatography-olfactometry (GC-O) based technique, being α-pinene, ß-pinene (0.6%), terpinolene (0.1%), α-copaene (0.1-0.3%), ß-phellandrene, and (E)-4,8-dimethyl-1,3,7-nonatriene (0.1-0.2%) the main olfactory constituents according to the decreasing factor of dilution (FD) order. The biological tests showed IC50 inhibition values of 42.2 and 6.8 µg/mL for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively.

13.
Phytochemistry ; 161: 21-27, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30798201

RESUMO

Ptilostemon casabonae (L.) Greuter is a Mediterranean endemism traditionally used for its health-giving properties. Little is known about this species, therefore this study provides additional information about the phytochemical and biomolecular patterns of this plant, to have a combined fingerprint as a taxonomic tool. Several P. casabonae specimens were therefore collected from three different sites, two from Sardinia (Italy) and one from Corsica and the hydroalcoholic extracts of their aerial parts were investigated through HPLC-PDA-MS/MS analysis to study the phenolic composition. Quercetin, luteolin, kaempferol, apigenin and diosmetin O-glycosides, and caffeoylquinic acid derivatives were found as main components. Samples from the three sites showed similar phenolic profiles, although statistical analyses highlighted some quantitative differences for several compounds. The biomolecular analysis included amplification and sequencing of ITS, 5S-rRNA-NTS and psbA regions. No difference was found in the nucleotides among the P. casabonae samples from different geographical origins; however, a comparison with other Ptilostemon species sequences from Genbank, revealed an interspecific variability of ITS and psbA regions. The combination of the results of the phytochemical and biomolecular studies provide information on P. casabonae useful to depict this little-known plant, which can also be applied for future investigations and to obtain a fingerprint of it. Moreover, the stability of the phenolic profile within the species affords to identify a set of specialised metabolites useful for its chemotaxonomic characterization. At the same time, the stability of the biomolecular profile of P. casabonae, and the identification of sequences specific for this species, enables to identify useful biomolecular markers to distinguish it unequivocally.


Assuntos
Asteraceae/química , Compostos Fitoquímicos/análise , Biomarcadores/análise , Itália
14.
J Chromatogr A ; 1583: 124-135, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30477715

RESUMO

Room-temperature ionic liquids (ILs) have been shown to be successful as stationary phases (SPs) for gas chromatography in several fields of applications because of their unique and tunable selectivity, low vapor pressure and volatility, high thermal stability (over 300 °C), and good chromatographic properties. This study has been focused on two ILs based on a phosphonium cation (trihexyl(tetradecyl)phosphonium, P66614) combined with different anions, previously shown to be suitable as gas chromatography (GC) SPs. In particular, trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide ([P66614+] [NTf2-]) and trihexyl(tetradecyl)phosphonium chloride ([P66614+] [Cl-]) were investigated, as the Abraham linear solvation energy relationship has shown their ability to interact with the solute(s) when tested with a set of 26-34 probe analytes. The chromatographic performance were investigated on narrow bore and conventional test columns using the following: i) Grob test, ii) a group of model mixtures of compounds characteristic of the flavor, fragrance and essential oil fields (FFMix), iii) a standard mixture of 29 volatile allergens (AlMix), and iv) two essential oils of different complexity (sage and vetiver essential oils). The columns coated with the investigated IL SPs were characterized by similar polarity (Polarity Number (PN): 37 for [P66614+] [Cl-] and 33 for [P66614+] [NTf2-]), high efficiency and highly satisfactory inertness. The two IL SPs also exhibited a completely different separation performance, with [P66614+] [Cl-] test columns mainly characterized by high retention and selectivity based on the analyte functional groups, and [P66614+] [NTf2-] test columns featured by short retention and selectivity mainly related to the analyte volatility and polarity. These results were also confirmed with the analysis of sage and vetiver essential oils.


Assuntos
Cromatografia Gasosa/métodos , Líquidos Iônicos/química , Odorantes/análise , Óleos Voláteis/análise , Compostos Organofosforados/química , Perfumes/análise , Ânions/química , Cátions , Isomerismo , Espectrometria de Massas , Padrões de Referência
15.
J Chromatogr A ; 1495: 64-75, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28343686

RESUMO

In the fields of essential oils and fragrances, samples often consist of mixtures of compounds with similar structural and physical characteristics (e.g. mono- and sesquiterpenoids), whose correct identification closely depends on the synergic combination of chromatographic and mass spectral data. This sample complexity means that new GC stationary phases with different selectivities are continually being investigated. Ionic liquids (ILs) are of great interest as GC stationary phases in this field because of their selectivity (significantly different than that of currently phases) and their high temperature stability. A first generation of IL GC columns was found to be competitive when applied to these field, in terms of selectivity and efficiency, compared to conventional columns (polydimethylsiloxane, (e.g. OV-1), methyl-polysiloxane 5%-phenyl (e.g. SE-52), 7%-cyanopropyl, 7%-phenyl polysiloxane (e.g. OV-1701), and polyethylen glycol (e.g. PEG-20M). However, these columns showed significant activity towards polar or active analytes, which primarily affected their quantitative performance. A new generation of highly-inactive columns coated with three of the most widely-used ionic liquid GC stationary phases has recently been introduced; these phases are SLB-IL60i (1,12-di(tripropylphosphonium) dodecane bis(trifluoromethylsulfonyl) imide [NTf2], SLB-IL76i (tri-(tripropylphosphonium-hexanamido)-triethylamine [NTf2]), and SLB-IL111i (1,5-di (2,3-dimethyllimidazolium) pentane [NTf2]). This study carefully tested the new inert IL columns, in view of their routine application in the fragrance and essential oil fields. They were found to have unusually high selectivity, comparable to that of first-generation IL columns, while their inertness and efficiency were competitive with those of currently-used conventional columns. The IL column performance of first and second generations was compared, through the quali-quantitative analysis of components in a group of different complexity samples; these included the Grob test, a standard mixture of "suspected" skin allergens, and the essential oils of chamomile and sandalwood.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Líquidos Iônicos/química , Óleos Voláteis/análise , Alérgenos/análise , Farneseno Álcool/análise , Óleos Voláteis/química , Extratos Vegetais/química , Sesquiterpenos Policíclicos , Santalum/química , Santalum/metabolismo , Sesquiterpenos/análise , Estereoisomerismo
16.
PLoS One ; 12(2): e0172322, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207861

RESUMO

Salvia desoleana Atzei & V. Picci is an indigenous species in Sardinia island used in folk medicine to treat menstrual, digestive and central nervous system diseases. Nowadays, it is widely cultivated for the pleasant smell of its essential oil (EO), whose antimicrobial and antifungal activities have already been screened. This study evaluated the in vitro anti-Herpes Simplex Virus-2 (HSV-2) activity of S. desoleana EO, fractions and main components: linalyl acetate, alpha terpinyl acetate, and germacrene D. Phytochemical composition of S. desoleana EO was studied by GC-FID/MS analysis and the active fraction(s) and/or compounds in S. desoleana EO were identified with a bioassay-guided fractionation procedure through in vitro assays on cell viability and HSV-2 and RSV inhibition. S. desoleana EO inhibits both acyclovir sensitive and acyclovir resistant HSV-2 strains with EC50 values of 23.72 µg/ml for the former and 28.57 µg/ml for the latter. Moreover, a significant suppression of HSV-2 replication was observed with an EC50 value of 33.01 µg/ml (95% CI: 26.26 to 41.49) when the EO was added post-infection. Among the fractions resulting from flash column chromatography on silica gel, the one containing 54% of germacrene D showed a similar spectrum of activity of S. desoleana EO with a stronger suppression in post-infection stage. These results indicated that S. desoleana EO can be of interest to develop new and alternative anti-HSV-2 products active also against acyclovir-resistant HSV-2 strains.


Assuntos
Antivirais/farmacologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 2/efeitos dos fármacos , Óleos Voláteis/farmacologia , Salvia/química , Animais , Chlorocebus aethiops , Cromatografia Gasosa-Espectrometria de Massas , Herpes Simples/virologia , Técnicas In Vitro , Óleos Voláteis/química , Células Vero
17.
Food Chem ; 225: 276-287, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28193425

RESUMO

Tea prepared by infusion of dried leaves of Camellia sinensis (L.) Kuntze, is the second world's most popular beverage, after water. Its consumption is associated with its chemical composition: it influences its sensory and nutritional quality addressing consumer preferences, and potential health benefits. This study aims to obtain an informative chemical signature of the volatile fraction of black tea samples from Ceylon by applying the principles of sensomics. In particular, several high concentration capacity (HCC) sample preparation techniques were tested in combination with GC×GC-MS to investigate chemical signatures of black tea volatiles. This platform, using headspace solid phase microextraction (HS-SPME) with multicomponent fiber as sampling technique, recovers 95% of the key-odorants in a fully automated work-flow. A group 123 components, including key-odorants, technological and botanical tracers, were mapped. The resulting 2D fingerprints were interpreted by pattern recognition tools (i.e. template matching fingerprinting and scripting) providing highly informative chemical signatures for quality assessment.


Assuntos
Camellia sinensis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Chá/química , Compostos Orgânicos Voláteis/análise
18.
BMC Plant Biol ; 15: 102, 2015 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25887127

RESUMO

BACKGROUND: The dynamics of plant volatile (PV) emission, and the relationship between damaged area and biosynthesis of bioactive molecules in plant-insect interactions, remain open questions. Direct Contact-Sorptive Tape Extraction (DC-STE) is a sorption sampling technique employing non adhesive polydimethylsiloxane tapes, which are placed in direct contact with a biologically-active surface. DC-STE coupled to Gas Chromatography - Mass Spectrometry (GC-MS) is a non-destructive, high concentration-capacity sampling technique able to detect and allow identification of PVs involved in plant responses to biotic and abiotic stresses. Here we investigated the leaf topographical dynamics of herbivory-induced PV (HIPV) produced by Phaseolus lunatus L. (lima bean) in response to herbivory by larvae of the Mediterranean climbing cutworm (Spodoptera littoralis Boisd.) and mechanical wounding by DC-STE-GC-MS. RESULTS: Time-course experiments on herbivory wounding caused by larvae (HW), mechanical damage by a pattern wheel (MD), and MD combined with the larvae oral secretions (OS) showed that green leaf volatiles (GLVs) [(E)-2-hexenal, (Z)-3-hexen-1-ol, 1-octen-3-ol, (Z)-3-hexenyl acetate, (Z)-3-hexenyl butyrate] were associated with both MD and HW, whereas monoterpenoids [(E)-ß-ocimene], sesquiterpenoids [(E)-nerolidol] and homoterpenes (DMNT and TMTT) were specifically associated with HW. Up-regulation of genes coding for HIPV-related enzymes (Farnesyl Pyrophosphate Synthase, Lipoxygenase, Ocimene Synthase and Terpene Synthase 2) was consistent with HIPV results. GLVs and sesquiterpenoids were produced locally and found to influence their own gene expression in distant tissues, whereas (E)-ß-ocimene, TMTT, and DMNT gene expression was limited to wounded areas. CONCLUSIONS: DC-STE-GC-MS was found to be a reliable method for the topographical evaluation of plant responses to biotic and abiotic stresses, by revealing the differential distribution of different classes of HIPVs. The main advantages of this technique include: a) in vivo sampling; b) reproducible sampling; c) ease of execution; d) simultaneous assays of different leaf portions, and e) preservation of plant material for further "omic" studies. DC-STE-GC-MS is also a low-impact innovative method for in situ PV detection that finds potential applications in sustainable crop management.


Assuntos
Herbivoria , Phaseolus/fisiologia , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Absorção Fisiológica , Animais , Dimetilpolisiloxanos/química , Cromatografia Gasosa-Espectrometria de Massas , Larva/crescimento & desenvolvimento , Larva/fisiologia , Folhas de Planta/fisiologia , Spodoptera/crescimento & desenvolvimento , Estresse Fisiológico
19.
J Chromatogr A ; 1360: 264-74, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25130094

RESUMO

Comprehensive two-dimensional gas chromatography (GC×GC) coupled with Mass Spectrometry (MS) is one of today's most powerful analytical platforms for detailed analysis of medium-to-high complexity samples. The column set usually consists of a long, conventional-inner-diameter first dimension ((1)D) (typically 15-30m long, 0.32-0.25mm dc), and a short, narrow-bore second dimension ((2)D) column (typically 0.5-2m, 0.1mm dc) where separation is run in a few seconds. However, when thermal modulation is used, since the columns of a set are coupled in series, a flow mismatch occurs between the two dimensions, making it impossible to operate simultaneously at optimized flow conditions. Further, short narrow-bore capillaries can easily be overloaded, because of their lower loadability, limiting the effectiveness of (2)D separation. In this study, improved gas linear velocities in both chromatographic dimensions were achieved by coupling the (1)D column with two parallel (2)D columns, having identical inner diameter, stationary phase chemistry, and film thickness. In turn, these were connected to two detectors: a fast quadrupole Mass Spectrometer (MS) and a Flame Ionization Detector (FID). Different configurations were tested and performances compared to a conventional set-up; experimental results on two model mixtures (n-alkanes and fourteen medium-to-high polarity volatiles of interest in the flavor and fragrance field) and on the essential oil of Artemisia umbelliformis Lam., show the system provides consistent results, in terms of analyte identification (reliability of spectra and MS matching) and quantitation, also affording an internal cross-validation of quantitation accuracy.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Alcanos/análise , Ionização de Chama , Aromatizantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/química , Perfumes/análise , Reprodutibilidade dos Testes
20.
J Chromatogr A ; 1318: 1-11, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24144305

RESUMO

This study reports and critically discusses the results of a systematic investigation on the effectiveness of different and complementary sampling approaches, based on either sorption and adsorption, treated as a further dimension of a two-dimensional comprehensive gas chromatography-mass spectrometry analytical platform for sensomics. The focus is on the potentials of a group of high concentration capacity (HCC) sample preparation (Solid Phase Microextraction, SPME, Stir Bar Sorptive Extraction, SBSE and Headspace Sorptive Extraction, HSSE) and Dynamic Headspace (D-HS) techniques investigated to provide information useful for fingerprinting and profiling studies of food aroma. Volatiles and semi-volatiles contributing to define whole and nonfat dry milk aroma have been successfully characterized thanks to the combination of effective and selective sampling by HCC and D-HS techniques, high separation and detection power of GC×GC-MS and suitable data elaboration (i.e., Comprehensive Template Matching Fingerprinting - CTMF). Out of the sample preparation techniques investigated, HSSE and SBSE have shown to be really effective for sensomics studies because of their high concentration factors, providing highly representative profiles as well as analyte recovery suitable for GC-Olfactometry even with high odor threshold (OT) markers or potent odorants in sub-trace amounts.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Análise de Alimentos , Odorantes/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA