Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571421

RESUMO

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Assuntos
Neoplasias , Humanos , Neoplasias/genética
2.
Sci Immunol ; 8(90): eadj5792, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039376

RESUMO

Peptide-centric chimeric antigen receptors (PC-CARs) recognize oncoprotein epitopes displayed by cell-surface human leukocyte antigens (HLAs) and offer a promising strategy for targeted cancer therapy. We have previously developed a PC-CAR targeting a neuroblastoma-associated PHOX2B peptide, leading to robust tumor cell lysis restricted by two common HLA allotypes. Here, we determine the 2.1-angstrom crystal structure of the PC-CAR-PHOX2B-HLA-A*24:02-ß2m complex, which reveals the basis for antigen-specific recognition through interactions with CAR complementarity-determining regions (CDRs). This PC-CAR adopts a diagonal docking mode, where interactions with both conserved and polymorphic HLA framework residues permit recognition of multiple HLA allotypes from the A9 serological cross-reactive group, covering a combined global population frequency of up to 46.7%. Biochemical binding assays, molecular dynamics simulations, and structural and functional analyses demonstrate that high-affinity PC-CAR recognition of cross-reactive pHLAs necessitates the presentation of a specific peptide backbone, where subtle structural adaptations of the peptide are critical for high-affinity complex formation, and CAR T cell killing. Our results provide a molecular blueprint for engineering CARs with optimal recognition of tumor-associated antigens in the context of different HLAs, while minimizing cross-reactivity with self-epitopes.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Peptídeos/química , Epitopos , Antígenos de Neoplasias
3.
Nat Commun ; 14(1): 8204, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081856

RESUMO

The conformational landscapes of peptide/human leucocyte antigen (pHLA) protein complexes encompassing tumor neoantigens provide a rationale for target selection towards autologous T cell, vaccine, and antibody-based therapeutic modalities. Here, using complementary biophysical and computational methods, we characterize recurrent RAS55-64 Q61 neoepitopes presented by the common HLA-A*01:01 allotype. We integrate sparse NMR restraints with Rosetta docking to determine the solution structure of NRASQ61K/HLA-A*01:01, which enables modeling of other common RAS55-64 neoepitopes. Hydrogen/deuterium exchange mass spectrometry experiments alongside molecular dynamics simulations reveal differences in solvent accessibility and conformational plasticity across a panel of common Q61 neoepitopes that are relevant for recognition by immunoreceptors. Finally, we predict binding and provide structural models of NRASQ61K antigens spanning the entire HLA allelic landscape, together with in vitro validation for HLA-A*01:191, HLA-B*15:01, and HLA-C*08:02. Our work provides a basis to delineate the solution surface features and immunogenicity of clinically relevant neoepitope/HLA targets for cancer therapy.


Assuntos
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/genética , Peptídeos/metabolismo , Antígenos de Histocompatibilidade , Antígenos HLA-A
5.
Nature ; 623(7988): 820-827, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938771

RESUMO

The majority of oncogenic drivers are intracellular proteins, constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient for generating responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins essential for tumorigenesis. We focused on targeting the unmutated peptide QYNPIRTTF discovered on HLA-A*24:02, which is derived from the neuroblastoma-dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (PC-CARs) through a counter panning strategy using predicted potentially cross-reactive peptides. We further proposed that PC-CARs can recognize peptides on additional HLA allotypes when presenting a similar overall molecular surface. Informed by our computational modelling results, we show that PHOX2B PC-CARs also recognize QYNPIRTTF presented by HLA-A*23:01, the most common non-A2 allele in people with African ancestry. Finally, we demonstrate potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that PC-CARs have the potential to expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and allow targeting through additional HLA allotypes in a clinical setting.


Assuntos
Antígenos de Neoplasias , Neuroblastoma , Proteínas Oncogênicas , Peptídeos , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , África/etnologia , Alelos , Sequência de Aminoácidos , Carcinogênese , Reações Cruzadas , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Neuroblastoma/genética , Neuroblastoma/imunologia , Neuroblastoma/terapia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/imunologia , Peptídeos/antagonistas & inibidores , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico
6.
Nat Commun ; 14(1): 6349, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816745

RESUMO

The class I proteins of the major histocompatibility complex (MHC-I) display epitopic peptides derived from endogenous proteins on the cell surface for immune surveillance. Accurate modeling of peptides bound to the human MHC, HLA, has been mired by conformational diversity of the central peptide residues, which are critical for recognition by T cell receptors. Here, analysis of X-ray crystal structures within our curated database (HLA3DB) shows that pHLA complexes encompassing multiple HLA allotypes present a discrete set of peptide backbone conformations. Leveraging these backbones, we employ a regression model trained on terms of a physically relevant energy function to develop a comparative modeling approach for nonamer pHLA structures named RepPred. Our method outperforms the top pHLA modeling approach by up to 19% in structural accuracy, and consistently predicts blind targets not included in our training set. Insights from our work may be applied towards predicting antigen immunogenicity, and receptor cross-reactivity.


Assuntos
Epitopos de Linfócito T , Peptídeos , Humanos , Peptídeos/química , Receptores de Antígenos de Linfócitos T , Antígenos de Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/metabolismo
7.
J Biol Chem ; 299(10): 105136, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543367

RESUMO

Human Tapasin (hTapasin) is the main chaperone of MHC-I molecules, enabling peptide loading and antigen repertoire optimization across HLA allotypes. However, it is restricted to the endoplasmic reticulum (ER) lumen as part of the protein loading complex (PLC), and therefore is highly unstable when expressed in recombinant form. Additional stabilizing co-factors such as ERp57 are required to catalyze peptide exchange in vitro, limiting uses for the generation of pMHC-I molecules of desired antigen specificities. Here, we show that the chicken Tapasin (chTapasin) ortholog can be expressed recombinantly at high yields in a stable form, independent of co-chaperones. chTapasin can bind the human HLA-B∗37:01 with low micromolar-range affinity to form a stable tertiary complex. Biophysical characterization by methyl-based NMR methods reveals that chTapasin recognizes a conserved ß2m epitope on HLA-B∗37:01, consistent with previously solved X-ray structures of hTapasin. Finally, we provide evidence that the B∗37:01/chTapasin complex is peptide-receptive and can be dissociated upon binding of high-affinity peptides. Our results highlight the use of chTapasin as a stable scaffold for protein engineering applications aiming to expand the ligand exchange function on human MHC-I and MHC-like molecules.


Assuntos
Apresentação de Antígeno , Galinhas , Antígenos HLA-B , Proteínas de Membrana Transportadoras , Chaperonas Moleculares , Animais , Humanos , Antígenos HLA-B/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Epitopos/metabolismo , Engenharia de Proteínas
8.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292750

RESUMO

Peptide-Centric Chimeric Antigen Receptors (PC-CARs), which recognize oncoprotein epitopes displayed by human leukocyte antigens (HLAs) on the cell surface, offer a promising strategy for targeted cancer therapy 1 . We have previously developed a PC-CAR targeting a neuroblastoma- associated PHOX2B peptide, leading to robust tumor cell lysis restricted by two common HLA allotypes 2 . Here, we determine the 2.1 Å structure of the PC-CAR:PHOX2B/HLA-A*24:02/ß2m complex, which reveals the basis for antigen-specific recognition through interactions with CAR complementarity-determining regions (CDRs). The PC-CAR adopts a diagonal docking mode, where interactions with both conserved and polymorphic HLA framework residues permit recognition of multiple HLA allotypes from the A9 serological cross-reactivity group, covering a combined American population frequency of up to 25.2%. Comprehensive characterization using biochemical binding assays, molecular dynamics simulations, and structural and functional analyses demonstrate that high-affinity PC-CAR recognition of cross-reactive pHLAs necessitates the presentation of a specific peptide backbone, where subtle structural adaptations of the peptide are critical for high-affinity complex formation and CAR-T cell killing. Our results provide a molecular blueprint for engineering CARs with optimal recognition of tumor-associated antigens in the context of different HLAs, while minimizing cross-reactivity with self-epitopes.

9.
Proc Natl Acad Sci U S A ; 120(25): e2304055120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310998

RESUMO

The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (ß2 microglobulin, ß2m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/ß2m interface, to generate conformationally stable, peptide-receptive molecules named "open MHC-I." Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type when loaded with low- to moderate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in ß2m-interacting sites of the peptide-binding groove to long-range effects on the α2-1 helix and α3 domain. The interchain disulfide bond stabilizes MHC-I molecules in an open conformation to promote peptide exchange across multiple human leukocyte antigen (HLA) allotypes, covering representatives from five HLA-A supertypes, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structure-guided design, combined with conditional ß-peptide ligands, provides a universal platform to generate ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires covering highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade , Humanos , Peptídeos/genética , Complexo Principal de Histocompatibilidade , Epitopos , Dissulfetos
10.
Sci Adv ; 9(8): eade7151, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827371

RESUMO

Immunological chaperones tapasin and TAP binding protein, related (TAPBPR) play key roles in antigenic peptide optimization and quality control of nascent class I major histocompatibility complex (MHC-I) molecules. The polymorphic nature of MHC-I proteins leads to a range of allelic dependencies on chaperones for assembly and cell-surface expression, limiting chaperone-mediated peptide exchange to a restricted set of human leukocyte antigen (HLA) allotypes. Here, we demonstrate and characterize xeno interactions between a chicken TAPBPR ortholog and a complementary repertoire of HLA allotypes, relative to its human counterpart. We find that TAPBPR orthologs recognize empty MHC-I with broader allele specificity and facilitate peptide exchange by maintaining a reservoir of receptive molecules. Deep mutational scanning of human TAPBPR further identifies gain-of-function mutants, resembling the chicken sequence, which can enhance HLA-A*01:01 expression in situ and promote peptide exchange in vitro. These results highlight that polymorphic sites on MHC-I and chaperone surfaces can be engineered to manipulate their interactions, enabling chaperone-mediated peptide exchange on disease-relevant HLA alleles.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunoglobulinas , Humanos , Ligantes , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/química , Antígenos de Histocompatibilidade Classe II , Chaperonas Moleculares/metabolismo , Antígenos HLA
11.
Front Immunol ; 14: 1116906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761745

RESUMO

Major Histocompatibility Complex class I (MHC-I) molecules display self, viral or aberrant epitopic peptides to T cell receptors (TCRs), which employ interactions between complementarity-determining regions with both peptide and MHC-I heavy chain 'framework' residues to recognize specific Human Leucocyte Antigens (HLAs). The highly polymorphic nature of the HLA peptide-binding groove suggests a malleability of interactions within a common structural scaffold. Here, using structural data from peptide:MHC-I and pMHC:TCR structures, we first identify residues important for peptide and/or TCR binding. We then outline a fixed-backbone computational design approach for engineering synthetic molecules that combine peptide binding and TCR recognition surfaces from existing HLA allotypes. X-ray crystallography demonstrates that chimeric molecules bridging divergent HLA alleles can bind selected peptide antigens in a specified backbone conformation. Finally, in vitro tetramer staining and biophysical binding experiments using chimeric pMHC-I molecules presenting established antigens further demonstrate the requirement of TCR recognition on interactions with HLA framework residues, as opposed to interactions with peptide-centric Chimeric Antigen Receptors (CARs). Our results underscore a novel, structure-guided platform for developing synthetic HLA molecules with desired properties as screening probes for peptide-centric interactions with TCRs and other therapeutic modalities.


Assuntos
Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Antígenos HLA , Regiões Determinantes de Complementaridade/química , Antígenos
12.
Nat Commun ; 13(1): 5470, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115831

RESUMO

Loading of MHC-I molecules with peptide by the catalytic chaperone tapasin in the peptide loading complex plays a critical role in antigen presentation and immune recognition. Mechanistic insight has been hampered by the lack of detailed structural information concerning tapasin-MHC-I. We present here crystal structures of human tapasin complexed with the MHC-I molecule HLA-B*44:05, and with each of two anti-tapasin antibodies. The tapasin-stabilized peptide-receptive state of HLA-B*44:05 is characterized by distortion of the peptide binding groove and destabilization of the ß2-microglobulin interaction, leading to release of peptide. Movements of the membrane proximal Ig-like domains of tapasin, HLA-B*44:05, and ß2-microglobulin accompany the transition to a peptide-receptive state. Together this ensemble of crystal structures provides insights into a distinct mechanism of tapasin-mediated peptide exchange.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Antígenos HLA-B , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulinas/metabolismo , Peptídeos/química , Ligação Proteica
13.
Nat Chem Biol ; 18(8): 859-868, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35725941

RESUMO

Chaperones tapasin and transporter associated with antigen processing (TAP)-binding protein related (TAPBPR) associate with the major histocompatibility complex (MHC)-related protein 1 (MR1) to promote trafficking and cell surface expression. However, the binding mechanism and ligand dependency of MR1/chaperone interactions remain incompletely characterized. Here in vitro, biochemical and computational studies reveal that, unlike MHC-I, TAPBPR recognizes MR1 in a ligand-independent manner owing to the absence of major structural changes in the MR1 α2-1 helix between empty and ligand-loaded molecules. Structural characterization using paramagnetic nuclear magnetic resonance experiments combined with restrained molecular dynamics simulations reveals that TAPBPR engages conserved surfaces on MR1 to induce similar adaptations to those seen in MHC-I/TAPBPR co-crystal structures. Finally, nuclear magnetic resonance relaxation dispersion experiments using 19F-labeled diclofenac show that TAPBPR can affect the exchange kinetics of noncovalent metabolites with the MR1 groove, serving as a catalyst. Our results support a role of chaperones in stabilizing nascent MR1 molecules to enable loading of endogenous or exogenous cargo.


Assuntos
Antígenos de Histocompatibilidade Classe I , Imunoglobulinas , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/química , Imunoglobulinas/química , Ligantes , Proteínas de Membrana/metabolismo , Chaperonas Moleculares , Peptídeos/química
14.
Nature ; 599(7885): 477-484, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732890

RESUMO

The majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos HLA/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Proteínas Oncogênicas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Reações Cruzadas , Apresentação Cruzada , Feminino , Antígenos HLA/metabolismo , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Humanos , Interferon gama/imunologia , Camundongos , Neoplasias/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
15.
Nat Commun ; 11(1): 1909, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312993

RESUMO

Peptide exchange technologies are essential for the generation of pMHC-multimer libraries used to probe diverse, polyclonal TCR repertoires in various settings. Here, using the molecular chaperone TAPBPR, we develop a robust method for the capture of stable, empty MHC-I molecules comprising murine H2 and human HLA alleles, which can be readily tetramerized and loaded with peptides of choice in a high-throughput manner. Alternatively, catalytic amounts of TAPBPR can be used to exchange placeholder peptides with high affinity peptides of interest. Using the same system, we describe high throughput assays to validate binding of multiple candidate peptides on empty MHC-I/TAPBPR complexes. Combined with tetramer-barcoding via a multi-modal cellular indexing technology, ECCITE-seq, our approach allows a combined analysis of TCR repertoires and other T cell transcription profiles together with their cognate antigen specificities in a single experiment. The new approach allows TCR/pMHC interactions to be interrogated easily at large scale.


Assuntos
Proteínas de Transporte/química , Antígenos de Histocompatibilidade Classe I/química , Proteínas de Membrana Transportadoras/química , Chaperonas Moleculares/química , Peptídeos/química , Domínios e Motivos de Interação entre Proteínas , Alelos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Biblioteca Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Celular , Imunoquímica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Linfócitos T
16.
Proc Natl Acad Sci U S A ; 116(51): 25602-25613, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796585

RESUMO

The interplay between a highly polymorphic set of MHC-I alleles and molecular chaperones shapes the repertoire of peptide antigens displayed on the cell surface for T cell surveillance. Here, we demonstrate that the molecular chaperone TAP-binding protein related (TAPBPR) associates with a broad range of partially folded MHC-I species inside the cell. Bimolecular fluorescence complementation and deep mutational scanning reveal that TAPBPR recognition is polarized toward the α2 domain of the peptide-binding groove, and depends on the formation of a conserved MHC-I disulfide epitope in the α2 domain. Conversely, thermodynamic measurements of TAPBPR binding for a representative set of properly conformed, peptide-loaded molecules suggest a narrower MHC-I specificity range. Using solution NMR, we find that the extent of dynamics at "hotspot" surfaces confers TAPBPR recognition of a sparsely populated MHC-I state attained through a global conformational change. Consistently, restriction of MHC-I groove plasticity through the introduction of a disulfide bond between the α1/α2 helices abrogates TAPBPR binding, both in solution and on a cellular membrane, while intracellular binding is tolerant of many destabilizing MHC-I substitutions. Our data support parallel TAPBPR functions of 1) chaperoning unstable MHC-I molecules with broad allele-specificity at early stages of their folding process, and 2) editing the peptide cargo of properly conformed MHC-I molecules en route to the surface, which demonstrates a narrower specificity. Our results suggest that TAPBPR exploits localized structural adaptations, both near and distant to the peptide-binding groove, to selectively recognize discrete conformational states sampled by MHC-I alleles, toward editing the repertoire of displayed antigens.


Assuntos
Antígenos de Histocompatibilidade Classe I , Chaperonas Moleculares , Peptídeos , Dissulfetos/química , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Domínios Proteicos
17.
Blood ; 134(8): 699-708, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31133602

RESUMO

Ixolaris is a potent tick salivary anticoagulant that binds coagulation factor Xa (FXa) and zymogen FX, with formation of a quaternary tissue factor (TF)/FVIIa/ FX(a)/Ixolaris inhibitory complex. Ixolaris blocks TF-induced coagulation and PAR2 signaling and prevents thrombosis, tumor growth, and immune activation. We present a high-resolution structure and dynamics of Ixolaris and describe the structural basis for recognition of FX. Ixolaris consists of 2 Kunitz domains (K1 and K2) in which K2 is strikingly dynamic and encompasses several residues involved in FX binding. This indicates that the backbone plasticity of K2 is critical for Ixolaris biological activity. Notably, a nuclear magnetic resonance-derived model reveals a mechanism for an electrostatically guided, high-affinity interaction between Ixolaris and FX heparin-binding (pro)exosite, resulting in an allosteric switch in the catalytic site. This is the first report revealing the structure-function relationship of an anticoagulant targeting a zymogen serving as a scaffold for TF inhibition.


Assuntos
Inibidores do Fator Xa/química , Inibidores do Fator Xa/farmacologia , Fator Xa/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/farmacologia , Animais , Fator Xa/química , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Carrapatos/química
18.
Elife ; 82019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31134895

RESUMO

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that then associates with the TAZ2 or KIX domains of the transcriptional co-activator CBP. Our results support a mechanism of FoxM1 regulation in which the TAD undergoes switching between disordered and different ordered structures.


Assuntos
Ativação Enzimática , Proteína Forkhead Box M1/química , Proteína Forkhead Box M1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sialoglicoproteínas/metabolismo , Quinase 1 Polo-Like
19.
Protein Eng Des Sel ; 32(12): 525-532, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32725167

RESUMO

Current approaches for generating major histocompatibility complex (MHC) Class-I proteins with desired bound peptides (pMHC-I) for research, diagnostic and therapeutic applications are limited by the inherent instability of empty MHC-I molecules. Using the properties of the chaperone TAP-binding protein related (TAPBPR), we have developed a robust method to produce soluble, peptide-receptive MHC-I molecules in Chinese Hamster Ovary cells at high yield, completely bypassing the requirement for laborious refolding from inclusion bodies expressed in E.coli. Purified MHC-I/TAPBPR complexes can be prepared for multiple human allotypes, and exhibit complex glycan modifications at the conserved Asn 86 residue. As a proof of concept, we demonstrate both HLA allele-specific peptide binding and MHC-restricted antigen recognition by T cells for two relevant tumor-associated antigens. Our system provides a facile, high-throughput approach for generating pMHC-I antigens to probe and expand TCR specificities present in polyclonal T cell repertoires.


Assuntos
Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/química , Chaperonas Moleculares/metabolismo , Engenharia de Proteínas , Alelos , Animais , Células CHO , Cricetulus , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Jurkat , Modelos Moleculares , Chaperonas Moleculares/química , Conformação Proteica , Solubilidade
20.
Nat Chem Biol ; 14(8): 811-820, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988068

RESUMO

Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex.


Assuntos
Regulação Alostérica , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Humanos , Imunoglobulinas/química , Proteínas de Membrana/química , Peptídeos/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA