Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0281211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862626

RESUMO

The social amoeba Dictyostelium discoideum is a model for a wide range of biological processes including chemotaxis, cell-cell communication, phagocytosis, and development. Interrogating these processes with modern genetic tools often requires the expression of multiple transgenes. While it is possible to transfect multiple transcriptional units, the use of separate promoters and terminators for each gene leads to large plasmid sizes and possible interference between units. In many eukaryotic systems this challenge has been addressed through polycistronic expression mediated by 2A viral peptides, permitting efficient, co-regulated gene expression. Here, we screen the most commonly used 2A peptides, porcine teschovirus-1 2A (P2A), Thosea asigna virus 2A (T2A), equine rhinitis A virus 2A (E2A), and foot-and-mouth disease virus 2A (F2A), for activity in D. discoideum and find that all the screened 2A sequences are effective. However, combining the coding sequences of two proteins into a single transcript leads to notable strain-dependent decreases in expression level, suggesting additional factors regulate gene expression in D. discoideum that merit further investigation. Our results show that P2A is the optimal sequence for polycistronic expression in D. discoideum, opening up new possibilities for genetic engineering in this model system.


Assuntos
Dictyostelium , Cavalos , Animais , Suínos , Gravidez , Feminino , Humanos , Dictyostelium/genética , Prole de Múltiplos Nascimentos , Gravidez Múltipla , Peptídeos/genética , Comunicação Celular
2.
Wiley Interdiscip Rev Syst Biol Med ; 12(3): e1479, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035001

RESUMO

Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.


Assuntos
Transdução de Sinais , Cicatrização/fisiologia , Animais , Cálcio/metabolismo , Movimento Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Modelos Biológicos , NF-kappa B/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-26172740

RESUMO

Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales-from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.


Assuntos
Dictyostelium/citologia , Modelos Biológicos , AMP Cíclico/metabolismo , Espaço Extracelular/metabolismo , Cinética , Transdução de Sinais
4.
J Neurosci Methods ; 173(1): 20-6, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18579213

RESUMO

Synapses are individually operated, computational units for neural communication. To manipulate physically individual synapses in a living organism, we have developed a laser ablation technique for removing single synapses in live neurons in C. elegans that operates without apparent damage to the axon. As a complementary technique, we applied microfluidic immobilization of C. elegans to facilitate long-term fluorescence imaging and observation of neuronal development. With this technique, we directly demonstrated the existence of competition between developing synapses in the HSNL motor neuron.


Assuntos
Caenorhabditis elegans/citologia , Diagnóstico por Imagem/métodos , Neurônios/citologia , Sinapses/fisiologia , Sinapses/efeitos da radiação , Animais , Axônios/fisiologia , Comportamento Animal , Caenorhabditis elegans/fisiologia , Terapia a Laser/métodos , Técnicas Analíticas Microfluídicas/métodos , Movimento/fisiologia , Fatores de Tempo
5.
Anal Chem ; 79(13): 4845-51, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17542555

RESUMO

This article describes a method for manipulating the temperature inside aqueous droplets, utilizing a thermoelectric cooler to control the temperature of select portions of a microfluidic chip. To illustrate the adaptability of this approach, we have generated an "ice valve" to stop fluid flow in a microchannel. By taking advantage of the vastly different freezing points for aqueous solutions and immiscible oils, we froze a stream of aqueous droplets that were formed on-chip. By integrating this technique with cell encapsulation into aqueous droplets, we were also able to freeze single cells encased in flowing droplets. Using a live-dead stain, we confirmed the viability of cells was not adversely affected by the process of freezing in aqueous droplets provided cryoprotectants were utilized. When combined with current droplet methodologies, this technology has the potential to both selectively heat and cool portions of a chip for a variety of droplet-related applications, such as freezing, temperature cycling, sample archiving, and controlling reaction kinetics.


Assuntos
Linfoma de Células B/patologia , Técnicas Analíticas Microfluídicas/métodos , Soluções/química , Água/química , Sobrevivência Celular , Congelamento , Cinética , Óleo Mineral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA