Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(8): 168010, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36806475

RESUMO

SHP2 is a phosphatase/adaptor protein that plays an important role in various signaling pathways. Its mutations are associated with cancers and developmental diseases. SHP2 contains a protein tyrosine phosphatase (PTP) and two SH2 domains. Selective inhibition of these domains has been challenging due to the multitude of homologous proteins in the proteome. Here, we developed a monobody, synthetic binding protein, that bound to and inhibited the SHP2 PTP domain. It was selective to SHP2 PTP over close homologs. A crystal structure of the monobody-PTP complex revealed that the monobody bound both highly conserved residues in the active site and less conserved residues in the periphery, rationalizing its high selectivity. Its epitope overlapped with the interface between the PTP and N-terminal SH2 domains that is formed in auto-inhibited SHP2. By using the monobody as a probe for the accessibility of the PTP active site, we developed a simple, nonenzymatic assay for the allosteric regulation of SHP2. The assay showed that, in the absence of an activating phospho-Tyr ligand, wild-type SHP2 and the "PTP-dead" C459E mutant were predominantly in the closed state in which the PTP active site is inaccessible, whereas the E76K and C459S mutants were in the open, active state. It also revealed that previously developed monobodies to the SH2 domains, ligands lacking a phospho-Tyr, weakly favored the open state. These results provide corroboration for a conformational equilibrium underlying allosteric regulation of SHP2, provide powerful tools for characterizing and controlling SHP2 functions, and inform drug discovery against SHP2.


Assuntos
Antineoplásicos , Inibidores Enzimáticos , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Humanos , Regulação Alostérica/efeitos dos fármacos , Mutação , Neoplasias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Transdução de Sinais , Domínios Proteicos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia
2.
J Mol Biol ; 429(9): 1364-1380, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28347651

RESUMO

The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody-SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.


Assuntos
Anticorpos Monoclonais/imunologia , Fosfotirosina/imunologia , Domínios de Homologia de src/imunologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/imunologia , Anticorpos Monoclonais/química , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Quinases da Família src/química
3.
Nat Chem Biol ; 13(1): 62-68, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27820802

RESUMO

RAS GTPases are important mediators of oncogenesis in humans. However, pharmacological inhibition of RAS has proved challenging. Here we describe a functionally critical region, located outside the effector lobe of RAS, that can be targeted for inhibition. We developed NS1, a synthetic binding protein (monobody) that bound with high affinity to both GTP- and GDP-bound states of H-RAS and K-RAS but not N-RAS. NS1 potently inhibited growth factor signaling and oncogenic H-RAS- and K-RAS-mediated signaling and transformation but did not block oncogenic N-RAS, BRAF or MEK1. NS1 bound the α4-ß6-α5 region of RAS, which disrupted RAS dimerization and nanoclustering and led to blocking of CRAF-BRAF heterodimerization and activation. These results establish the importance of the α4-ß6-α5 interface in RAS-mediated signaling and define a previously unrecognized site in RAS for inhibiting RAS function.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Proteínas ras/antagonistas & inibidores , Proteínas ras/química , Animais , Anticorpos Monoclonais/química , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Proteínas ras/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(37): 14924-9, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980151

RESUMO

The dysregulated tyrosine kinase BCR-ABL causes chronic myelogenous leukemia in humans and forms a large multiprotein complex that includes the Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2). The expression of SHP2 is necessary for BCR-ABL-dependent oncogenic transformation, but the precise signaling mechanisms of SHP2 are not well understood. We have developed binding proteins, termed monobodies, for the N- and C-terminal SH2 domains of SHP2. Intracellular expression followed by interactome analysis showed that the monobodies are essentially monospecific to SHP2. Two crystal structures revealed that the monobodies occupy the phosphopeptide-binding sites of the SH2 domains and thus can serve as competitors of SH2-phosphotyrosine interactions. Surprisingly, the segments of both monobodies that bind to the peptide-binding grooves run in the opposite direction to that of canonical phosphotyrosine peptides, which may contribute to their exquisite specificity. When expressed in cells, monobodies targeting the N-SH2 domain disrupted the interaction of SHP2 with its upstream activator, the Grb2-associated binder 2 adaptor protein, suggesting decoupling of SHP2 from the BCR-ABL protein complex. Inhibition of either N-SH2 or C-SH2 was sufficient to inhibit two tyrosine phosphorylation events that are critical for SHP2 catalytic activity and to block ERK activation. In contrast, targeting the N-SH2 or C-SH2 revealed distinct roles of the two SH2 domains in downstream signaling, such as the phosphorylation of paxillin and signal transducer and activator of transcription 5. Our results delineate a hierarchy of function for the SH2 domains of SHP2 and validate monobodies as potent and specific antagonists of protein-protein interactions in cancer cells.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Transformação Celular Neoplásica , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Células HEK293 , Humanos , Células K562 , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA