Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15551, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969714

RESUMO

A major challenge in therapeutic approaches applying hematopoietic stem cells (HSCs) is the cell quantity. The primary objective of this study was to predict the miRNAs and anti-miRNAs using bioinformatics tools and investigate their effects on the expression levels of key genes predicted in the improvement of proliferation, and the inhibition of differentiation in HSCs isolated from Human umbilical cord blood (HUCB). A network including genes related to the differentiation and proliferation stages of HSCs was constructed by enriching data of text (PubMed) and StemChecker server with KEGG signaling pathways, and was improved using GEO datasets. Bioinformatics tools predicted a profile from miRNAs containing miR-20a-5p, miR-423-5p, and chimeric anti-miRNA constructed from 5'-miR-340/3'-miR-524 for the high-score genes (RB1, SMAD4, STAT1, CALML4, GNG13, and CDKN1A/CDKN1B genes) in the network. The miRNAs and anti-miRNA were transferred into HSCs using polyethylenimine (PEI). The gene expression levels were estimated using the RT-qPCR technique in the PEI + (miRNA/anti-miRNA)-contained cell groups (n = 6). Furthermore, CD markers (90, 16, and 45) were evaluated using flow cytometry. Strong relationships were found between the high-score genes, miRNAs, and chimeric anti-miRNA. The RB1, SMAD4, and STAT1 gene expression levels were decreased by miR-20a-5p (P < 0.05). Additionally, the anti-miRNA increased the gene expression level of GNG13 (P < 0.05), whereas the miR-423-5p decreased the CDKN1A gene expression level (P < 0.01). The cellular count also increased significantly (P < 0.05) but the CD45 differentiation marker did not change in the cell groups. The study revealed the predicted miRNA/anti-miRNA profile expands HSCs isolated from HUCB. While miR-20a-5p suppressed the RB1, SMAD4, and STAT1 genes involved in cellular differentiation, the anti-miRNA promoted the GNG13 gene related to the proliferation process. Notably, the mixed miRNA/anti-miRNA group exhibited the highest cellular expansion. This approach could hold promise for enhancing the cell quantity in HSC therapy.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Proliferação de Células/genética , Diferenciação Celular/genética , Sangue Fetal/citologia , Biologia Computacional/métodos , Redes Reguladoras de Genes , Regulação da Expressão Gênica , Perfilação da Expressão Gênica
2.
Brain Res ; 1836: 148936, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649134

RESUMO

The extracellular matrix is recognized as an efficient and determining component in the growth, proliferation, and differentiation of cells due to its ability to perceive and respond to environmental signals. Applying three-dimensional scaffolds can create conditions similar to the extracellular matrix and provide an opportunity to investigate cell fate. In this study, we employed the PuraMatrix hydrogel scaffold as an advanced cell culture platform for the neural differentiation of stem cells derived from human breastmilk to design an opportune model for tissue engineering. Isolated stem cells from breastmilk were cultured and differentiated into neural-like cells on PuraMatrix peptide hydrogel and in the two-dimensional system. The compatibility of breastmilk-derived stem cells with PuraMatrix and cell viability was evaluated by scanning electron microscopy and MTT assay, respectively. Induction of differentiation was achieved by exposing cells to the neurogenic medium. After 21 days of the initial differentiation process, the expression levels of glial fibrillary acidic protein (GFAP), microtubule-associated protein (MAP2), ß-tubulin III, and neuronal nuclear antigen (NeuN) were analyzed using the immunostaining technique. The results illustrated a notable expression of MAP2, ß-tubulin-III, and NeuN in the three-dimensional cell culture in comparison to the two-dimensional system, indicating the beneficial effect of PuraMatrix scaffolds in the process of differentiating breastmilk-derived stem cells into neural-like cells. In view of the obtained results, the combination of breastmilk-derived stem cells and PuraMatrix hydrogel scaffold could be an advisable preference for neural tissue regeneration and cell therapy.


Assuntos
Diferenciação Celular , Leite Humano , Humanos , Diferenciação Celular/fisiologia , Células Cultivadas , Alicerces Teciduais , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Neurônios/metabolismo , Hidrogéis , Sobrevivência Celular/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Feminino , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco/fisiologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Tubulina (Proteína)/metabolismo , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Peptídeos , Antígenos Nucleares
3.
Biol Cell ; 116(4): e2300123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470182

RESUMO

The testicular niche, which includes the germ cells, somatic cells, and extracellular matrix, plays a crucial role in maintaining the proper functions of the testis. Gonadotoxic treatments, such as chemotherapy and radiation therapy, have significantly improved the survival rates of cancer patients but have also been shown to have adverse effects on the testicular microenvironment. Therefore, repairing the testicular niche after gonadotoxic treatments is essential to restore its function. In recent years, several approaches, such as stem cell transplantation, gene therapy, growth factor therapy, and pharmacological interventions have been proposed as potential therapeutic strategies to repair the testicular niche. This comprehensive review aims to provide an overview of the current understanding of testis damage and repair mechanisms. We will cover a range of topics, including the mechanism of gonadotoxic action, repair mechanisms, and treatment approaches. Overall, this review highlights the importance of repairing the testicular niche after gonadotoxic treatments and identifies potential avenues for future research to improve the outcomes for cancer survivors.


Assuntos
Neoplasias , Testículo , Masculino , Humanos , Testículo/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Microambiente Tumoral
4.
J Chemother ; : 1-14, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38130211

RESUMO

Sonic hedgehog (SHH) medulloblastoma etiology is associated with the SHH molecular pathway activation at different levels. We investigated the effect of arsenic trioxide as a downstream-level inhibitor of the SHH signaling pathway on morphology, cytotoxicity, migration, and SHH-related and apoptotic gene expression of DAOY cells. Cells were treated at various arsenic trioxide (ATO)concentrations (1, 2, 3, 5, and 10 µM) for different times (24 and 48 hr). Following treatments, the morphology of the cells was investigated at ×20 and ×40 magnification by an inverted microscope. Then, cytotoxicity was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue assays. Cell migration was analyzed through the wound-healing assay. Furthermore, the expression of SHH-related (GLI1, GLI2, SMO, and MYCN) and apoptotic genes (BAX, BCL2, and TP53) was assessed by real-time quantitative polymerase chain reaction (qPCR). Finally, GLI1, SMO, and MYCN markers were analyzed through immunocytochemistry. Data were analyzed by SPSS (version 16) and P≤0.05 was considered significant. Morphological changes were seen at 3 and 2 µM in 24 and 48 hr of treatment, respectively. The MTT assay showed a dose-dependent cytotoxicity indicating an IC50 value of 3.39±0.35 and 2.05±0.64 µM in 24 and 48hr treatment, respectively. In addition, the trypan blue assay showed higher IC50 values of 4.29±0.25 and 3.92±0.22 µM in 24 and 48 hr treatment, respectively. The wound-healing assay indicated a dose-dependent reduction of cell migration speed showing a 50% reduction at 2.89±0.26 µM. Significant downregulation of GLI1 and GLI2, as well as the upregulation of BAX, BAX/BCL2 ratio, and TP53 were evident. Significant increases in GLI1 and MYCN markers were also evident in immunocytochemistry. ATO, as a downstream effective inhibitor of the SHH pathway, substantially leads to cell death, cell migration inhibition, apoptosis upregulation, and downregulation of SHH target genes in DAOY medulloblastoma. Since ATO is a toxic chemotherapeutic agent, it must be used at low concentrations (2 µM) in order not to damage healthy cells.

5.
J Funct Biomater ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132810

RESUMO

Male survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs. This research aimed to evaluate the efficiency of nanocomposite scaffolds based on alginate, chitosan, and graphene oxide (GO) in facilitating SSCs proliferation. To analyze the cytotoxicity of the scaffolds, an MTT assay was conducted at 1, 3, and 7 days, and the sample containing 30 µg/mL of GO (ALGCS/GO30) exhibited the most favorable results, indicating its optimal performance. The identity of the cells was confirmed using flow cytometry with C-Kit and GFRα1 markers. The scaffolds were subjected to various analyses to characterize their properties. FTIR was employed to assess the chemical structure, XRD to examine crystallinity, and SEM to visualize the morphology of the scaffolds. To evaluate the proliferation of SSCs, qRT-PCR was used. The study's results demonstrated that the ALGCS/GO30 nanocomposite scaffold exhibited biocompatibility and facilitated the attachment and proliferation of SSCs. Notably, the scaffold displayed a significant increase in proliferation markers compared to the control group, indicating its ability to support SSC growth. The expression level of the PLZF protein was assessed using the Immunocytochemistry method. The observations confirmed the qRT-PCR results, which indicated that the nanocomposite scaffolds had higher levels of PLZF protein expression than scaffolds without GO. The biocompatible ALGCS/GO30 is a promising alternative for promoting SSC proliferation in in vitro applications.

6.
Toxicol Rep ; 10: 104-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685271

RESUMO

Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.

7.
Rep Biochem Mol Biol ; 12(2): 233-240, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38317817

RESUMO

Background: T-cell acute lymphoblastic leukemia (T-ALL) is known as an aggressive malignant disease resulting from the neoplastic alteration of T precursor cells. Although treatment with stringent chemotherapy regimens has achieved an 80% cure rate in children, it has been associated with lower success rates in adult treatment. Silver nanoparticles (Ag-NPs) have a toxic effect on human breast cancer cells, human glioblastoma U251 cells, and chronic myeloid leukemia cells in vitro. This study aimed to investigate the effect of Ag nanostructures (Ag-NSs) on Jurkat cells' viability and apoptosis. Methods: The Jurkat cell line was acquired. Following the synthesis Ag-NSs and their characterization, they were incubated with Jurkat cells at different doses for 24, 48, and 72 hours to determine the optimal time and dose. Two groups were examined: a control group with Jurkat cells without nanostructure maintained in the same medium as the cells in the treatment group without changing the medium, and a treatment group with cells treated with the Ag nanostructure solution at a dose of 75 µg/ml for 48 hours according to the MTT results. After 48 hours, the cells from the two groups were used for the q RT-PCR of the apoptotic genes (BAX, BCL-2, and CASPASE-3). Results: According to our results, the rod-shaped silver nanostructures had a size of about 50 nm, increased apoptotic markers, including BAX and CASPASE-3, and induced cell death. Conclusions: Ag-NSs have anticancer properties and can induce apoptosis of cells; therefore, they may be a potential candidate for the treatment of T-cell acute lymphoblastic leukemia.

8.
Eur J Transl Myol ; 33(1)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36101996

RESUMO

In this study, we aimed to evaluate the effect of Bacillus coagulans and Lactobacillus casei probiotics on liver damage induced by silver nanoparticles and expression of Bax, Bcl2 and Caspase 3 genes in rats. 32 adult male Wistar rats were divided into four healthy groups (control), the group receiving silver nanoparticles treated with L. casei, the group receiving silver nanoparticles treated with B. coagulans and the group receiving only silver nanoparticles. The effect of nanoparticles was induced by intraperitoneal injection of silver nanoparticles prepared from nettle at a dose of 50 mg/kg and entered the liver tissue through the bloodstream. Two days after injection, probiotic treatment with 109 CFU was performed by gavage for 30 days. One day after the last gavage, rat liver tissue weight was assessed. Also, the total amount of RNA was extracted from treated, and healthy tissues, as well as induced silver nanoparticles tissues, then evaluated by Real Time PCR. Data were evaluated using one-way Anova, Tukey test. Based on the biochemical results of this study, exposure of rats to different concentrations of silver nanoparticles compared with the control group caused a significant increase in the serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), alkaline phosphatase (ALP), especially at high concentrations. Evaluation of damage and histopathological lesions showed that silver nanoparticles in different concentrations caused different damage to liver tissue, so that, necrosis, inflammatory cell infiltration and vascular degeneration were observed at different concentrations by silver nanoparticles. In the present study, the effects of L. casei cell extract on increasing the expression of Bax proapoptotic gene and decreasing Bcl2 gene expression in cancer cells and inducing programmed cell death were shown. In this study, the expression of Bax, Bcl-2 and Caspase-3 genes in the group receiving silver nanoparticles and in the groups treated with probiotics showed significant changes compared to the control group. It can be concluded that the function of silver nanoparticles and the effects of relative improvement of probiotics are from the internal route of apoptosis and factors such as dose, nanoparticle size and nanoparticle coating have an important role in the toxicity of silver nanoparticles, thus the destructive effects on liver tissue could be increased by increasing the concentration of silver nanoparticles.

9.
Nanomedicine (Lond) ; 17(8): 531-545, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35264013

RESUMO

Aim: MiRNA's-143 and -206 are powerful apoptotic regulators in cancer cells. This study aimed to use miRNA-143- and 206-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with folic acid to induce apoptosis in the EL4 cancer cells. Materials & methods: The therapy was conducted in six groups: treatment with both miRNAs simultaneously (mixed miRNAs), miRNA-206 treatment, miRNA-143 treatment, blank PLGA, blank polyethylenimine (PEI) and complex PEI-miRNAs. Results: In terms of viability, in mixed miRNAs no synergistic effect was observed on EL4 cell elimination. However, in the single miRNA-206 group, a stronger apoptotic effect was observed than the mixed miRNAs group and single miRNA-143 group alone. Conclusion: MiRNAs' apoptotic induction effects in cancer cells were found to be remarkable.


Assuntos
MicroRNAs , Nanopartículas , Neoplasias , Ácido Fólico , Humanos , Ácido Láctico , Masculino , MicroRNAs/genética , Polietilenoimina , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espermatogônias , Células-Tronco
10.
Cell J ; 23(5): 544-551, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34837682

RESUMO

OBJECTIVE: In cancer treatments, smart gene delivery via nanoparticles (NPs) can be targeted for cancer cells, while concurrently minimizing damage to healthy cells. This study assessed the efficiency of poly lactic-co-glycolic acid (PLGA)-miR 143/206 transfection on apoptosis in mouse leukemia cancer cells (El4) and spermatogonial stem cells (SSCs). MATERIALS AND METHODS: In this experimental study, neonatal mouse spermatogonia cells and EL4 cancer cell lines were used. MicroRNA-PLGA NPs were prepared, characterized, and targeted with folate. Several doses were evaluated to obtain a suitable miR dose that can induce appropriate apoptosis in EL4 cells, while not harming SSCs. Cells were treated separately at 3 doses of each miR (for miR 143, doses of 25, 50 and 75 nmol and for miR 206, doses of 50, 100 and 150 nmol). The experiments were performed at 24, 48 and 72 hours. Viability and apoptosis were investigated by MTT and Annexin Kits. RESULTS: Based on MTT assay results, the optimal dose of miR 143 was 75 nmol (59.87 ± 2.85 % SSC and 35.3 ± 0.78 % EL4) (P≤0.05), and for miR 206, the optimal dose was 150 nmol (54.82 ± 6.7 % SSC and 33.92 ± 3.01% EL4) (P≤0.05). The optimal time was 48 hours. At these doses, the survival rate of the EL4 cells was below the half maximal inhibitory concentration (IC50) and SSC survival was above 50%. Annexin V staining also confirmed the selected doses (for miR 143 total apoptosis was 6.62% ± 1.8 SSC and 37.4% ± 4.2 EL4 (P≤0.05), and miR 206 was (10.98% ± 1.5 SSC and 36.4% ± 3.7 EL4, P≤0.05). CONCLUSION: Using intelligent transfection by NPs, we were able to induce apoptosis on EL4 cells and maintain acceptable SSC survival rates.

11.
Cell Biochem Funct ; 39(8): 983-990, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34374101

RESUMO

Mesenchymal stem cell (MSC)-based cell therapy can provide opportunities for the treatment of various diseases. However, when used in vivo, these cells should be labelled and monitored by a non-invasive method during delivery to the desired locations within the body. This study describes a biomimicry method that effectively labels human Wharton's jelly-derived MSCs (hWJ-MSCs) with a photoacoustics (PA) contrast agent, gold nanorods (GNRs), without the need for transfection agents (TAs). In this method for cell labelling, the hWJ-MSCs were co-incubated with non-adherent cells isolated from fresh umbilical cord for 2 days immediately before incubation with GNRs. Next, hWJ-MSCs were labelled with the GNRs at a concentration of approximately 1010 nanorads/mL (NR/mL) followed by transmission electron microscopy (TEM) and inductively coupled plasma mass spectroscopy (ICP-MS) to verify their labelling effectiveness. The GNRs-labelled MSCs prepared by this method had an intracellular gold (Au) concentration of 3.4 ± 0.4 pg/cell, which is an acceptable amount for cell labelling.


Assuntos
Materiais Biomiméticos/química , Ouro/química , Células-Tronco Mesenquimais/citologia , Nanotubos/química , Geleia de Wharton/citologia , Humanos
12.
J Biomed Mater Res A ; 109(5): 649-658, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32608143

RESUMO

Current hyaluronic acid-based hydrogels often cause cytotoxicity to encapsulated cells and lack the adhesive property required for effective biomedical and tissue engineering applications. Provision of the cell-adhesive surface is an important requirement to improve its biocompatibility. An aqueous solution of hyaluronic acid possessing phenolic hydroxyl (HA-Ph) moieties is gellable via a horseradish peroxidase (HRP)-catalyzed oxidative cross-linking reaction. This study evaluates the effect of different degrees of cross-linked Ph moieties on cellular adhesiveness and proliferation on the resultant enzymatically cross-linked HA-Ph hydrogels. Mechanical characterization demonstrated that the compression force of engineered hydrogels could be tuned in the range of 0.05-35 N by changing conjugated Ph moieties in the precursor formulation. The water contact angle and water content show hydrophobicity of hydrogels increased with increasing content of cross-linked Ph groups. The seeded mouse embryo fibroblast-like cell line and human cervical cancer cell line, on the HA-Ph hydrogel, proved cell attachment and spreading with a high content of cross-linked Ph groups. The HA-Ph with a higher degree of Ph moieties shows the maximum degree of cell adhesion, spreading, and proliferation which presents this hydrogel as a suitable biomaterial for biomedical and tissue engineering applications.


Assuntos
Hidrogéis/farmacologia , Fenol/farmacologia , Animais , Adesão Celular , Encapsulamento de Células , Linhagem Celular , Força Compressiva , Reagentes de Ligações Cruzadas , Feminino , Fibroblastos , Células HeLa , Peroxidase do Rábano Silvestre/farmacologia , Humanos , Ácido Hialurônico/química , Interações Hidrofóbicas e Hidrofílicas , Testes Mecânicos , Camundongos , Água , Suporte de Carga
14.
Stem Cell Res Ther ; 11(1): 191, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448280

RESUMO

BACKGROUND: Some children who have survived cancer will be azoospermic in the future. Performing isolation and purification procedures for spermatogonial stem cells (SSC) is very critical. In this regard, performing the process of decontamination of cancerous cells is the initial step. The major objective of the present study is to separate the malignant EL4 cell line in mice and spermatogonial stem cells in vitro. METHODS: The spermatogonial stem cells of sixty neonatal mice were isolated, and the procedure of co-culturing was carried out by EL4 which were classified into 2 major groups: (1) the control group (co-culture in a growth medium) and (2) the group of co-cultured cells which were separated using the microfluidic device. The percentage of cells was assessed using flow cytometry technique and common laboratory technique of immunocytochemistry and finally was confirmed through the laboratory technique of reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: The actual percentage of EL4 and SSC after isolation was collected at two outlets: the outputs for the smaller outlet were 0.12% for SSC and 42.14% for EL4, while in the larger outlet, the outputs were 80.38% for SSC and 0.32% for EL4; in the control group, the percentages of cells were 21.44% for SSC and 23.28% for EL4 (based on t test (p ≤ 0.05)). CONCLUSIONS: The present study demonstrates that the use of the microfluidic device is effective in separating cancer cells from spermatogonial stem cells.


Assuntos
Células-Tronco Germinativas Adultas , Espermatogônias , Animais , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Dispositivos Lab-On-A-Chip , Masculino , Camundongos
15.
J Control Release ; 321: 430-441, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32097673

RESUMO

Alzheimer's disease (AD) as a progressive neurodegenerative disorder is one of the leading causes of death globally. Among all treatment approaches, mesenchymal stem cells (MSCs)-based therapy is a promising modality for neurological disorders including the AD. This study aimed to magnetically deliver human Wharton's jelly-derived MSCs (WJ-MSCs) toward the hippocampal area within the AD rat's brain and determine the effects of them in cognitive improvement. Rats were randomly divided into five groups as follow: vehicle-treated control, AD model (injection of 8 µg/kg of amyloid ß 1-42), IV-NTC (treated with IV-injected Non-Targeted Cells), IV-TC (treated with IV-injected Targeted Cells), and ICV-NTC (treated with Intracerebroventricular-injected Non-Targeted Cells). WJ-MSCs were labeled with dextran-coated superparamagnetic iron oxide nanoparticles (dex-SPIONs, 50 µg/ml), by bio-mimicry method. SPIONs-labeled MSCs were highly prussian blue positive with an intracellular iron concentration of 2.9 ± 0.08 pg/cell, which were successfully targeted into the hippocampus of AD rats by a halbach magnet array as magnetic targeted cell delivery (MTCD) technique. Presence of SPIONs-labeled cells in hippocampal area was proved by magnetic resonance imaging (MRI) in which signal intensity was reduced by increasing the number of these cells. Behavioral examinations showed that WJ-MSCs caused memory and cognitive improvement. Also, histological assessments showed functional improvement of hippocampal cells by expression of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE). Overall, this study indicates MTCD approach as an alternative in MSC-based regenerative medicine because it approximately has the same results as invasive directly ICV-injection method has.


Assuntos
Doença de Alzheimer , Nanopartículas Magnéticas de Óxido de Ferro , Células-Tronco Mesenquimais , Geleia de Wharton , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Ratos
16.
Hum Cell ; 33(2): 308-317, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975030

RESUMO

There is a diverse population of stem cells in human breast milk that can be employed for therapeutic purposes as a reservoir of cells. The current study mainly aimed to determine the nature markers expressing on stem cells. For this aim, the expression of embryonic stem cell markers, as well as the expression of endothelial, mesenchymal, neural, and hematopoietic markers were evaluated by the flow cytometry analysis in fresh colostrum, breast milk, and cultured colostrum samples. The results showed that the embryonic (OCT4, SOX2, HLA-DR), hematopoietic (CD33, CD45, CD117), neural (CD133, Nestin), and mesenchymal (CD44, SCA1) stem cell markers present in colostrum had higher expression in comparison with their counterpart markers in fresh breast milk. The expression markers of stem cells in colostrum following a 2-week culture period were significantly increased compared with their counterpart markers in colostrum before the culture process. In the culture of breastmilk, cells were not observed adherent cells and colonies. Our findings form flow cytometry and cell culture suggest that the lactation stage could be one of the factors influencing the stem cell population and, consequently, the cultivation of breastmilk cells. The present study indicates that colostrum is a tremendous source of stem cells that could be applied in cell-based research.


Assuntos
Colostro/citologia , Leite Humano/citologia , Células-Tronco , Antígeno AC133 , Feminino , Citometria de Fluxo , Humanos , Fator 3 de Transcrição de Octâmero , Proteínas Proto-Oncogênicas c-kit , Fatores de Transcrição SOXB1 , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico
17.
Int J Biol Macromol ; 129: 1034-1039, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30742919

RESUMO

Nowadays, regenerating peripheral nerves injuries (PNIs) remain a major clinical challenge, which has gained a great attention between scientists. Here, we represent a nanocomposite based on silk fibroin reinforced gold nanorods (SF/GNRs) to evaluate the proliferation and attachment of PC12 cells. The morphological characterization of nanocomposites with transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) showed that the fabricated scaffolds have porous structure with interconnected pores that is suitable for cell adhesion and growth. GNRs significantly improved the poor electrical conductivity of bulk silk fibroin scaffold. Evaluating the morphology of PC12 cells on the scaffold also confirmed the normal morphology of cells with good rate of adhesion. SF/GNRs nanocomposites showed better cellular attachment, growth and proliferation without any toxicity compared with bulk SF scaffold. Moreover, immunostaining studies represented the overexpression of neural specific proteins like nestin and neuron specific enolase (NSE) in the cells cultured on SF/GNRs nanocomposites in comparison to neat SF scaffolds.


Assuntos
Materiais Biocompatíveis/farmacologia , Fibroínas/química , Ouro/química , Nanocompostos/química , Nanotubos/química , Nervos Periféricos/citologia , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Células PC12 , Ratos
18.
Cell J ; 21(1): 14-26, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30507084

RESUMO

OBJECTIVE: The purpose of this study was to evaluate in vitro cytotoxicity of gold nanorods (GNRs) on the viability of spermatogonial cells (SSCs) and mouse acute lymphoblastic leukemia cells (EL4s). MATERIALS AND METHODS: In this experimental study, SSCs were isolated from the neonate mice, following enzymatic digestion and differential plating. GNRs were synthesized, then modified by silica and finally conjugated with folic acid to form F-Si-GNRs. Different doses of F-Si-GNRs (25, 50, 75, 100, 125 and 140 µM) were used on SSCs and EL4s. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) proliferation assay was performed to examine the GNRs toxicity. Flow cytometry was used to confirm the identity of the EL4s and SSCs. Also, the identity and functionality of SSCs were determined by the expression of specific spermatogonial genes and transplantation into recipient testes. Apoptosis was determined by flow cytometry using an annexin V/propidium iodide (PI) kit. RESULTS: Flow cytometry showed that SSCs and EL4s were positive for Plzf and H-2kb, respectively. The viability percentage of SSCs and EL4s that were treated with 25, 50, 75, 100, 125 and 140 µM of F-Si-GNRs was 65.33 ± 3.51%, 60 ± 3.6%, 51.33 ± 3.51%, 49 ± 3%, 30.66 ± 2.08% and 16.33 ± 2.51% for SSCs and 57.66 ± 0.57%, 54.66 ± 1.5%, 39.66 ± 1.52%, 12.33 ± 2.51%, 10 ± 1% and 5.66 ± 1.15% for EL4s respectively. The results of the MTT assay indicated that 100 µM is the optimal dose to reach the highest and lowest level of cell death in EL4s and in SSCs, respectively. CONCLUSION: Cell death increased with increasing concentrations of F-Si-GNRs. Following utilization of F-Si-GNRs, there was a significant difference in the extent of apoptosis between cancer cells and SSCs.

19.
Biomed Pharmacother ; 108: 1244-1252, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30453447

RESUMO

BACKGROUND: The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. METHODS: We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation, ATP level, cytochrome c release and histopathology of cerebellums were determined in brains of schizophrenic rats. RESULTS: We showed that effective treatment with CMN reduced or prevented Fe3O4 magnetic-induced oxidative stress and mitochondrial dysfunction in the rat brain probably, as well as mitochondrial complex II activity, MMP, and ATP level were remarkably reduced in the cerebellum mitochondria of treated group toward control (p < 0.05). Therewith, ROS generation, and cytochrome c release were notably (p < 0.05) increased in the cerebellum mitochondria of treated group compared with control group. CONCLUSION: Taken together, Fe3O4 magnetic- CurNPs exhibits potent antineurotoxicity activity in cerebellums of schizophrenic rats. This approach can be extended to preclinical and clinical use and may have importance in schizophernia treatment in the future. To our knowledge this is the first report that provides the Fe3O4 magnetic- CurNPs could enhance the neuroprotective effects of CMN in the Schizophrenia.


Assuntos
Cerebelo/efeitos dos fármacos , Curcumina/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Escala de Avaliação Comportamental , Cerebelo/metabolismo , Cerebelo/patologia , Curcumina/química , Citocromos c/metabolismo , Modelos Animais de Doenças , Nanopartículas de Magnetita/química , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroproteção , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patologia
20.
Int J Nanomedicine ; 13: 2943-2954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849458

RESUMO

BACKGROUND: Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. OBJECTIVE: The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. METHODS: SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 µg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. RESULTS: The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. CONCLUSION: The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Ácido Fólico/química , Nanopartículas/administração & dosagem , Espermatogônias/patologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Ácido Fólico/administração & dosagem , Ácido Láctico/química , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/patologia , Espermatogônias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA