Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(8): 2025-2044, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39015084

RESUMO

Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE: Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.


Assuntos
Neoplasias Encefálicas , Movimento Celular , Proteínas de Choque Térmico HSP70 , Invasividade Neoplásica , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Movimento Celular/efeitos dos fármacos , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Linhagem Celular Tumoral , Feminino , Membrana Celular/metabolismo , Masculino , Adulto , Microdomínios da Membrana/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372954

RESUMO

P53 is a critical tumor suppressor that protects the integrity of genome and prevents cells from malignant transformation, including metastases. One of the driving forces behind the onset of metastases is the epithelial to mesenchymal transition (EMT) program. Zeb1 is one of the key transcription factors that govern EMT (TF-EMT). Therefore, the interaction and mutual influence of p53 and Zeb1 plays a critical role in carcinogenesis. Another important feature of tumors is their heterogeneity mediated by the presence of so-called cancer stem cells (CSCs). To this end, we have developed a novel fluorescent reporter-based approach to enrich the population of CSCs in MCF7 cells with inducible expression of Zeb1. Using these engineered cell lines, we studied the effect of p53 on Zeb1 interactomes isolated from both CSCs and regular cancer cells. By employing co-immunoprecipitations followed by mass spectrometry, we found that the composition of Zeb1 interactome was affected not only by the p53 status but also by the level of Oct4/Sox2 expression, indicating that stemness likely affects the specificity of Zeb1 interactions. This study, together with other proteomic studies of TF-EMT interactomes, provides a framework for future molecular analyses of biological functions of Zeb1 at all stages of oncogenesis.


Assuntos
Neoplasias da Mama , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Feminino , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/metabolismo , Proteômica , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Molecules ; 26(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074001

RESUMO

Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1-CTBP2 interaction.


Assuntos
Neoplasias da Mama/metabolismo , Proteômica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Ligação Proteica , Transdução de Sinais
4.
Cell Tissue Res ; 383(3): 1043-1060, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33237478

RESUMO

The origin of cells involved in regeneration in echinoderms remains an open question. Replenishment of circulatory coelomocytes-cells of the coelomic cavity in starfish-is an example of physiological regeneration. The coelomic epithelium is considered to be the main source of coelomocytes, but many details of this process remain unclear. This study examined the role of coelomocytes outside circulation, named marginal coelomocytes and small undifferentiated cells of the coelomic epithelium in coelomocyte replenishment in Asterias rubens. A qualitative and quantitative comparison of circulatory and marginal coelomocytes, as well as changes of circulatory coelomocyte concentrations in response to injury at different physiological statuses, was analysed. The presence of cells morphologically similar to coelomocytes in the context of coelomic epithelium was evaluated by electron microscopy. The irregular distribution of small cells on the surface and within the coelomic epithelium was demonstrated and the origin of small undifferentiated cells and large agranulocytes from the coelomic epithelium was suggested. Two events have been proposed to mediate the replenishment of coelomocytes in the coelom: migration of mature coelomocytes of the marginal cell pool and migration of small undifferentiated cells of the coelomic epithelium. The proteomic analysis of circulatory coelomocytes, coelomic epithelial cells and a subpopulation of coelomic epithelial cells, enriched in small undifferentiated cells, revealed proteins that were common and specific for each cell pool. Among these molecules were regulatory proteins, potential participants of regenerative processes.


Assuntos
Asterias/fisiologia , Células Epiteliais , Epitélio/fisiologia , Regeneração , Animais , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Proteoma/metabolismo
5.
Molecules ; 25(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198321

RESUMO

Secretome of multipotent mesenchymal stromal cells (MSCs) is actively used in biomedical applications such as alveolar bone regeneration, treatment of cardiovascular disease, and neurodegenerative disorders. Nevertheless, hMSCs have low proliferative potential and production of the industrial quantity of their secretome might be challenging. Human fetal multipotent mesenchymal stromal cells (FetMSCs) isolated from early human embryo bone marrow are easy to expand and might be a potential source for pharmaceutical substances production based on their secretome. However, the secretome of FetMSCs was not previously analyzed. Here, we describe the secretome of FetMSCs using LC-MALDI shotgun proteomics. We identified 236 proteins. Functional annotation of the identified proteins revealed their involvement in angiogenesis, ossification, regulation of apoptosis, and immune response processes, which made it promising for biomedical applications. The proteins identified in the FetMSCs secretome are involved in the same biological processes as proteins from previously described adult hMSCs secretomes. Nevertheless, many of the common hMSCs secretome components (such as VEGF, FGF, Wnt and TGF-ß) have not been identified in the FetMSCs secretome.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Cromatografia Líquida , Biologia Computacional , Meios de Cultivo Condicionados , Humanos , Proteômica , Medicina Regenerativa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
6.
BMC Bioinformatics ; 21(Suppl 12): 305, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32703190

RESUMO

BACKGROUND: Horizontal gene transfer, i.e. the acquisition of genetic material from nonparent organism, is considered an important force driving species evolution. Many cases of horizontal gene transfer from prokaryotes to eukaryotes have been registered, but no transfer mechanism has been deciphered so far, although viruses were proposed as possible vectors in several studies. In agreement with this idea, in our previous study we discovered that in two eukaryotic proteins bacteriophage recombination site (AttP) was adjacent to the regions originating via horizontal gene transfer. In one of those cases AttP site was present inside the introns of cysteine-rich repeats. In the present study we aimed to apply computational tools for finding multiple horizontal gene transfer events in large genome databases. For that purpose we used a sequence of cysteine-rich repeats to identify genes potentially acquired through horizontal transfer. RESULTS: HMMER remote similarity search significantly detected 382 proteins containing cysteine-rich repeats. All of them, except 8 sequences, belong to eukaryotes. In 124 proteins the presence of conserved structural domains was predicted. In spite of the fact that cysteine-rich repeats are found almost exclusively in eukaryotic proteins, many predicted domains are most common for prokaryotes or bacteriophages. Ninety-eight proteins out of 124 contain typical prokaryotic domains. In those cases proteins were considered as potentially originating via horizontal transfer. In addition, HHblits search revealed that two domains of the same fungal protein, Glycoside hydrolase and Peptidase M15, have high similarity with proteins of two different prokaryotic species, hinting at independent horizontal gene transfer events. CONCLUSIONS: Cysteine-rich repeats in eukaryotic proteins are usually accompanied by conserved domains typical for prokaryotes or bacteriophages. These proteins, containing both cysteine-rich repeats, and characteristic prokaryotic domains, might represent multiple independent horizontal gene transfer events from prokaryotes to eukaryotes. We believe that the presence of bacteriophage recombination site inside cysteine-rich repeat coding sequence may facilitate horizontal genes transfer. Thus computational approach, described in the present study, can help finding multiple sequences originated from horizontal transfer in eukaryotic genomes.


Assuntos
Bacteriófagos/genética , Transferência Genética Horizontal/genética , Genes Virais , Recombinação Genética/genética , Proteínas Virais/química , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Domínios Proteicos , Proteínas Virais/classificação
7.
Mol Biol Rep ; 47(5): 3867-3883, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372170

RESUMO

Here, we document changes in cell motility and organization of the contractile apparatus of human umbilical cord Wharton's jelly mesenchymal stem cells (MSCWJ-1) in the process of replicative senescence. Colocalization dynamics of F-actin and actin-binding proteins (myosin-9, α-actinin-4, RhoA) were examined in the MSCWJ-1 cell line. The results show that nuclear-cytoplasmic redistribution of RhoA occurs during replicative senescence, with maximal RhoA/nucleus colocalization evident at passage 15. At that time point, decreases in colocalization, namely myosin-9/F-actin and α-actinin-4/F-actin, were seen and myosin-9 was found in cytosolic extracts in the assembly-incompetent form. Using an automated intravital confocal cytometry system and quantitative analysis of MSCWJ-1 movements, we found that changes in cytoskeletal organization correlate with cell motility characteristics over a time period from passages 9 to 38. The factors examined (cytoskeleton structure, cell motility) indicate that the process by which cells transition to replicative senescence is best represented as three stages. The first stage lasts from cell culture isolation to passage 15 and is characterized by: accumulation of actin-binding proteins in assembly-incompetent forms; nuclear RhoA accumulation; and an increase in movement tortuosity. The second stage extends from passages 15 to 28 and is characterized by: an increase in the structural integrity of the actin cytoskeleton; exit of RhoA and alpha-actinin-4 from the nucleus; and a decrease in path tortuosity. The third stage extends from passage 28 to 38 and is marked by: a plateau in actin cytoskeleton structural integrity; significant decreases in nuclear RhoA levels; and decreases in cell speed.


Assuntos
Movimento Celular/fisiologia , Senescência Celular/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Sangue Fetal/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Miosinas/metabolismo , Cordão Umbilical
8.
Mob DNA ; 10: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675192

RESUMO

BACKGROUND: The transfer of genetic material from non-parent organisms is called horizontal gene transfer (HGT). One of the most conclusive cases of HGT in metazoans was previously described for the cellulose synthase gene in ascidians. RESULTS: In this study we identified a new protein, rusticalin, from the ascidian Styela rustica and presented evidence for its likely origin by HGT. Discernible homologues of rusticalin were found in placozoans, coral, and basal Chordates. Rusticalin was predicted to consist of two distinct regions, an N-terminal domain and a C-terminal domain. The N-terminal domain comprises two cysteine-rich repeats and shows remote similarity to the tick carboxypeptidase inhibitor. The C-terminal domain shares significant sequence similarity with bacterial MD peptidases and bacteriophage A500 L-alanyl-D-glutamate peptidase. A possible transfer of the C-terminal domain by bacteriophage was confirmed by an analysis of noncoding sequences of C. intestinalis rusticalin-like gene, which was found to contain a sequence similar to the bacteriophage A500 recombination site. Moreover, a sequence similar to the bacteriophage recombination site was found to be adjacent to the cellulose synthase catalytic subunit gene in the genome of Streptomices sp., the donor of ascidian cellulose synthase. CONCLUSIONS: The C-terminal domain of rusticalin and rusticalin-like proteins is likely to be horizontally transferred by the bacteriophage A500. A common mechanism involving bacteriophage mediated gene transfer can be proposed for at least two HGT events in ascidians.

9.
Cell Cycle ; 17(14): 1745-1756, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30009671

RESUMO

The proteasome is the key player in targeted degradation of cellular proteins and serves as a therapeutic target for treating several blood malignancies. Although in general, degradation of proteins via the proteasome requires their ubiquitination, a subset of proteins can be degraded independently of their ubiquitination by direct interaction with subunits of the 20S proteasome core. Thus, investigation of the proteasome-associated proteins may help identify novel targets of proteasome degradation and provide important insights into the mechanisms of malignant cell proteostasis. Here, using biochemical purification of proteasomes from multiple myeloma (MM) cells followed by mass-spectrometry we have uncovered 77 proteins in total that specifically interacted with the 20S proteasome via its PSMA3 subunit. Our GST pull-down assays followed by western blots validated the interactions identified by mass-spectrometry. Eleven proteins were confirmed to bind PSMA3 only upon apoptotic conditions induced by a combined treatment with the proteasome inhibitor, bortezomib, and genotoxic drug, doxorubicin. Nine of these eleven proteins contained bioinformatically predicted intrinsically disordered regions thus making them susceptible to ubiquitin-independent degradation. Importantly, among those proteins five interacted with the ubiquitin binding affinity matrix suggesting that these proteins may also be ubiquitinylated and hence degraded via the ubiquitin-dependent pathway. Collectively, these PSMA3-interacting proteins represent novel potential substrates for 20S proteasomes upon apoptosis. Furthermore, these data may shed light on the molecular mechanisms of cellular response to chemotherapy. ABBREVIATIONS: BD: bortezomib/doxorubicin treatment; CDK: cyclin-dependent kinases; CHCA: α-cyanohydroxycinnamic acid; IDP: intrinsically disordered proteins; IDR: intrinsically disordered regions; IPG: immobilized pI gradient; MALDI TOF/TOF: matrix-assisted laser desorption/ionization time-of-flight tandem mass-spectrometry; MM: multiple myeloma; ODC: ornithine decarboxylase; PI: proteasomal inhibitors; PSMA: alpha-type 20S proteasome subunits; PTMs: post-translational modifications; SDS-PAGE: sodium dodecylsulphate polyacrylamide gel electrophoresis; UIP: ubiquitin-independent proteasomal proteolysis.


Assuntos
Bortezomib/farmacologia , Doxorrubicina/farmacologia , Mieloma Múltiplo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Proteínas de Neoplasias/metabolismo , Especificidade por Substrato/efeitos dos fármacos
10.
Cell Tissue Res ; 366(2): 245-254, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27660155

RESUMO

In the present study, the anatomical association and functional interaction between nerve fibres and granular cells in the atrium of the snail Achatina achatina are investigated using a combination of scanning electron microscopy (SEM), pharmacological and immunofluorescence techniques. The SEM studies support a close anatomical association of axons with granular cells and new features of surface morphology are revealed. Pharmacological experiments showed that both serotonin and FMRFamide were able to induce degranulation of granular cells and the release of cysteine-rich atrial secretory protein. Serotonin- and FMRFamide-immunoreactive nerve fibres were observed at variable distances from granular cells, ranging from close contact to distances as far as the diameter of a muscle bundle. These results suggest that serotonin and FMRFamide play a role as paracrine excitatory transmitters in nerve-to-granular cell communication.


Assuntos
Comunicação Celular , FMRFamida/metabolismo , Átrios do Coração/citologia , Neurônios/citologia , Neurotransmissores/metabolismo , Serotonina/metabolismo , Caramujos/citologia , Caramujos/metabolismo , Animais , Átrios do Coração/inervação , Neurônios/metabolismo , Neurônios/ultraestrutura , Caramujos/ultraestrutura
11.
PLoS One ; 10(10): e0138787, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444993

RESUMO

Despite extensive studies of cardiac bioactive peptides and their functions in molluscs, soluble proteins expressed in the heart and secreted into the circulation have not yet been reported. In this study, we describe an 18.1-kDa, cysteine-rich atrial secretory protein (CRASP) isolated from the terrestrial snail Achatina achatina that has no detectable sequence similarity to any known protein or nucleotide sequence. CRASP is an acidic, 158-residue, N-glycosylated protein composed of eight alpha-helical segments stabilized with five disulphide bonds. A combination of fold recognition algorithms and ab initio folding predicted that CRASP adopts an all-alpha, right-handed superhelical fold. CRASP is most strongly expressed in the atrium in secretory atrial granular cells, and substantial amounts of CRASP are released from the heart upon nerve stimulation. CRASP is detected in the haemolymph of intact animals at nanomolar concentrations. CRASP is the first secretory protein expressed in molluscan atrium to be reported. We propose that CRASP is an example of a taxonomically restricted gene that might be responsible for adaptations specific for terrestrial pulmonates.


Assuntos
Cisteína/química , Cisteína/metabolismo , Átrios do Coração/metabolismo , Proteínas/química , Proteínas/metabolismo , Caramujos/metabolismo , Sequência de Aminoácidos , Animais , Hemolinfa/metabolismo , Moluscos/metabolismo , Conformação Proteica
12.
Cell Tissue Res ; 356(1): 83-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24408073

RESUMO

Echinoderms, due to their outstanding potential for regeneration, are widely used as experimental models for research in regenerative biology. One of the main problems in this field concerns identification and characterization of cells responsible for the restoration of lost body parts and organs in adult animals. In this study, we analyze the probable candidates for this role in the starfish Asterias rubens L., namely, small coelomic epithelial cells with a high nuclear-cytoplasmic ratio that have the ability to proliferate. These cells are one of several cell types common to the coelomic epithelium (CE) and coelomic fluid (CF). They are analyzed with respect to morphology, proportion in the total cell pool, dynamics after injury and distribution between CE and CF. The results of whole-mount and scanning electron microscopy provide evidence that these small cells occupy a boundary position between CE and CF. Moreover, a novel subpopulation of CE cells is identified that is enriched (up to 50 %) with small epitheliocytes capable of migrating from CE into the CF. As shown in experiments with BrdU incorporation and anti-phospho-histone H3 antibody staining, small epitheliocytes cultured on laminin retain proliferative activity for at least 1 month and can form colony-like aggregates. Two types of small proliferating cells are distinguished by their behavior in culture: some cells remain attached to the substrate and form aggregates, while others detach from the substrate during culturing. The morphology of small epitheliocytes, their proliferative activity in vivo and in vitro and the ability to migrate suggest that they possess certain properties characteristic of stem cells.


Assuntos
Asterias/citologia , Células Epiteliais/citologia , Animais , Adesão Celular , Contagem de Células , Proliferação de Células , Células Cultivadas , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Hemorragia/patologia , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA