Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(1): e13870, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36724166

RESUMO

Sweet basil, Ocimum basilicum L., is an important culinary herb grown worldwide. Although basil is green, many landraces, breeding lines, and exotic cultivars have purple stems and flowers. This anthocyanin pigmentation is unacceptable in traditional Italian basil used for Pesto sauce production. In the current study, we aimed to resolve the genetics that underlines the different colors. We used the recently published sweet basil genome to map quantitative trait loci (QTL) for flower and stem color in a bi-parental F2 population. It was found that the pigmentation is governed by a single QTL, harboring an anthocyanidin synthase (ANS) gene (EC 1.14.20.4). Further analysis revealed that the basil genome harbors two homeologous ANS genes, each carrying a loss-of-function mutation. ObANS1 carries a single base pair insertion resulting in a frameshift, and ObANS2 carries a missense mutation within the active site. In the purple-flower parent, ANS1 is functional, and ANS2 carries a nonsense mutation. The functionality of the ObANS1 active allele was validated by complementation assay in an Arabidopsis ANS mutant. Moreover, we have restored the functionality of the missense-mutated ObANS2 using site-directed activation. We found that the non-functional alleles were expressed to similar levels as the functional allele, suggesting polyploids invest futile effort in expressing non-functional genes, offsetting their advantageous redundancy. This work demonstrated the usefulness of the genomics and genetics of basil to understand the basic mechanism of metabolic traits and raise fundamental questions in polyploid plant biology.


Assuntos
Ocimum basilicum , Oxigenases/genética , Fenótipo , Mutação
2.
Chem Biodivers ; 19(1): e202100593, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34755931

RESUMO

Arnica montana is a plant distributed in most of Europe, including the Alpine arc and Apennines in Italy, and traditionally used worldwide for medicinal properties. Twelve natural populations of the species from Trentino-Alto Adige, Italy, were characterized using Headspace-Solid Phase Microextraction analysis for their volatile profile. Fifty-one compounds were detected in flower heads, the most abundant being (E)-Caryophyllene (23.4 %), 2,2,4,6,6-Pentamethylheptane (8.3 %), α- trans-Bergamotene (7.2 %), Germacrene D (5.7 %), and Hexanal (5.3 %). A multivariate analysis performed on the ten most abundant compounds grouped these investigated accessions into five main clusters. Three clusters, comprising together five accessions, were linked to the geographical origin of two collection sites. This work is a complete characterization of volatiles of the species by SPME analysis reported to date. Furthermore, results suggest that the species' volatile profile can be linked to the geographical origin of the natural populations and, therefore, represent a tool for evaluating biodiversity within the species.


Assuntos
Arnica/química , Compostos Orgânicos Voláteis/análise , Arnica/metabolismo , Biodiversidade , Análise por Conglomerados , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Itália , Extratos Vegetais/química , Análise de Componente Principal , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/isolamento & purificação
3.
Chem Biodivers ; 17(11): e2000311, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33094554

RESUMO

Asteriscus graveolens is an aromatic desert shrub which holds medicinal potential. This species belongs to the Asteraceae family and is endemic to the Mediterranean region. In the present study, wild plants were sampled from eleven locations throughout southern Israel and the volatile profiles from leaves and flowers were analyzed using GC/MS. Three methods for volatile sampling were tested for a representative population: solvent extraction (methyl tert-butyl ether), hydrodistillation of the essential oil and headspace solid-phase microextraction. In all methods, the majority of volatiles were characterized as oxygenated mono- and sesquiterpenes. Only solvent extraction was able to detect asteriscunolides that were previously reported as anticancer molecules. Hence, that method was chosen for further analyses. The leaves were dominated by three asteriscunolide isomers, cis-chrysanthenyl acetate and intermedeol. The flowers were dominated by bisabolone, 6-hydroxybisabol-2-en-1-one, cis-chrysanthenyl acetate, epi-α-cadinol, and germacrene-D. k-Means clustering analysis of these data divided the population into four clusters that significantly differ in their volatile composition as was further demonstrated by MANOVA analysis. Geographically, A. graveolens populations growing in Israel were found to be chemically diverse with unique varieties in the Dead Sea basin and the Arava region. This work demonstrates that chemo-geographic variation of volatile composition exists within A. graveolens population growing in Israel, so future research evaluating the medicinal potential of that plant should take this into consideration.


Assuntos
Asteraceae/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Asteraceae/metabolismo , Análise por Conglomerados , Flores/química , Flores/metabolismo , Israel , Óleos Voláteis/química , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Sesquiterpenos/análise , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA