Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Oncol ; 3(4): 524-548, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918777

RESUMO

IMPORTANCE: Cancer is the second leading cause of death worldwide. Current estimates on the burden of cancer are needed for cancer control planning. OBJECTIVE: To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 32 cancers in 195 countries and territories from 1990 to 2015. EVIDENCE REVIEW: Cancer mortality was estimated using vital registration system data, cancer registry incidence data (transformed to mortality estimates using separately estimated mortality to incidence [MI] ratios), and verbal autopsy data. Cancer incidence was calculated by dividing mortality estimates through the modeled MI ratios. To calculate cancer prevalence, MI ratios were used to model survival. To calculate YLDs, prevalence estimates were multiplied by disability weights. The YLLs were estimated by multiplying age-specific cancer deaths by the reference life expectancy. DALYs were estimated as the sum of YLDs and YLLs. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility. Countries were categorized by SDI quintiles to summarize results. FINDINGS: In 2015, there were 17.5 million cancer cases worldwide and 8.7 million deaths. Between 2005 and 2015, cancer cases increased by 33%, with population aging contributing 16%, population growth 13%, and changes in age-specific rates contributing 4%. For men, the most common cancer globally was prostate cancer (1.6 million cases). Tracheal, bronchus, and lung cancer was the leading cause of cancer deaths and DALYs in men (1.2 million deaths and 25.9 million DALYs). For women, the most common cancer was breast cancer (2.4 million cases). Breast cancer was also the leading cause of cancer deaths and DALYs for women (523 000 deaths and 15.1 million DALYs). Overall, cancer caused 208.3 million DALYs worldwide in 2015 for both sexes combined. Between 2005 and 2015, age-standardized incidence rates for all cancers combined increased in 174 of 195 countries or territories. Age-standardized death rates (ASDRs) for all cancers combined decreased within that timeframe in 140 of 195 countries or territories. Countries with an increase in the ASDR due to all cancers were largely located on the African continent. Of all cancers, deaths between 2005 and 2015 decreased significantly for Hodgkin lymphoma (-6.1% [95% uncertainty interval (UI), -10.6% to -1.3%]). The number of deaths also decreased for esophageal cancer, stomach cancer, and chronic myeloid leukemia, although these results were not statistically significant. CONCLUSION AND RELEVANCE: As part of the epidemiological transition, cancer incidence is expected to increase in the future, further straining limited health care resources. Appropriate allocation of resources for cancer prevention, early diagnosis, and curative and palliative care requires detailed knowledge of the local burden of cancer. The GBD 2015 study results demonstrate that progress is possible in the war against cancer. However, the major findings also highlight an unmet need for cancer prevention efforts, including tobacco control, vaccination, and the promotion of physical activity and a healthy diet.


Assuntos
Carga Global da Doença/tendências , Neoplasias/epidemiologia , Distribuição por Idade , Feminino , Humanos , Incidência , Masculino , Distribuição por Sexo , Fatores de Tempo
2.
JAMA ; 316(22): 2385-2401, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27959996

RESUMO

Importance: County-level patterns in mortality rates by cause have not been systematically described but are potentially useful for public health officials, clinicians, and researchers seeking to improve health and reduce geographic disparities. Objectives: To demonstrate the use of a novel method for county-level estimation and to estimate annual mortality rates by US county for 21 mutually exclusive causes of death from 1980 through 2014. Design, Setting, and Participants: Redistribution methods for garbage codes (implausible or insufficiently specific cause of death codes) and small area estimation methods (statistical methods for estimating rates in small subpopulations) were applied to death registration data from the National Vital Statistics System to estimate annual county-level mortality rates for 21 causes of death. These estimates were raked (scaled along multiple dimensions) to ensure consistency between causes and with existing national-level estimates. Geographic patterns in the age-standardized mortality rates in 2014 and in the change in the age-standardized mortality rates between 1980 and 2014 for the 10 highest-burden causes were determined. Exposure: County of residence. Main Outcomes and Measures: Cause-specific age-standardized mortality rates. Results: A total of 80 412 524 deaths were recorded from January 1, 1980, through December 31, 2014, in the United States. Of these, 19.4 million deaths were assigned garbage codes. Mortality rates were analyzed for 3110 counties or groups of counties. Large between-county disparities were evident for every cause, with the gap in age-standardized mortality rates between counties in the 90th and 10th percentiles varying from 14.0 deaths per 100 000 population (cirrhosis and chronic liver diseases) to 147.0 deaths per 100 000 population (cardiovascular diseases). Geographic regions with elevated mortality rates differed among causes: for example, cardiovascular disease mortality tended to be highest along the southern half of the Mississippi River, while mortality rates from self-harm and interpersonal violence were elevated in southwestern counties, and mortality rates from chronic respiratory disease were highest in counties in eastern Kentucky and western West Virginia. Counties also varied widely in terms of the change in cause-specific mortality rates between 1980 and 2014. For most causes (eg, neoplasms, neurological disorders, and self-harm and interpersonal violence), both increases and decreases in county-level mortality rates were observed. Conclusions and Relevance: In this analysis of US cause-specific county-level mortality rates from 1980 through 2014, there were large between-county differences for every cause of death, although geographic patterns varied substantially by cause of death. The approach to county-level analyses with small area models used in this study has the potential to provide novel insights into US disease-specific mortality time trends and their differences across geographic regions.


Assuntos
Mortalidade/tendências , Causas de Morte , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA