Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Pathol Res Pract ; 260: 155422, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38981347

RESUMO

Mesenchymal stem/stromal cells (MSCs) are acknowledged for their remarkable ability to undergo differentiation into various cell types. In addition, they exhibit anti-tumor characteristics, prompting endeavors to modify MSCs for employment in cancer therapies. On the contrary, it is imperative to recognize that MSCs have been extensively linked to pathways that facilitate the advancement of tumors. Numerous research studies have sought to modify MSCs for clinical application; however, the outcomes have been ambiguous, potentially due to the heterogeneity of MSC populations. Furthermore, the conflicting roles of MSCs in suppressing and promoting tumor growth present a challenge to the appropriateness of their use in anti-cancer therapies. Currently, there exists a lack of comprehensive comprehension concerning the anti-tumor and pro-tumor characteristics of MSCs for gastric cancer (GC). This article discusses the influence of MSCs on GC, the underlying mechanisms, the origins of MSCs, and their effects. This review article also elucidates how MSCs exhibit dual characteristics of promoting and inhibiting tumor growth. Hence, it is of utmost importance that clinical inquiries aimed at utilizing MSCs as a therapeutic intervention for cancer consider the potentiality of MSCs to accelerate the progression of GC. It is crucial to exercise caution throughout the process of developing MSC-based cellular therapies to enhance their anti-cancer attributes while simultaneously eliminating their tumor-promoting impacts.

2.
Med Oncol ; 41(7): 182, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900329

RESUMO

Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.


Assuntos
Interleucina-6 , Neoplasias , Transdução de Sinais , Humanos , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Animais , Progressão da Doença , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/uso terapêutico
3.
J Pers Med ; 14(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38673007

RESUMO

Huntington's disease (HD) is a chronic, inherited neurodegenerative condition marked by chorea, dementia, and changes in personality. The primary cause of HD is a mutation characterized by the expansion of a triplet repeat (CAG) within the huntingtin gene located on chromosome 4. Despite substantial progress in elucidating the molecular and cellular mechanisms of HD, an effective treatment for this disorder is not available so far. In recent years, researchers have been interested in studying cerebrospinal fluid (CSF) as a source of biomarkers that could aid in the diagnosis and therapeutic development of this disorder. Immunoglobulin heavy constant gamma 1 (IGHG1) is one of the CSF proteins found to increase significantly in HD. Considering this, it is reasonable to study the potential involvement of deleterious mutations in IGHG1 in the pathogenesis of this disorder. In this study, we explored the potential impact of deleterious mutations on IGHG1 and their subsequent association with HD. We evaluated 126 single-point amino acid substitutions for their impact on the structure and functionality of the IGHG1 protein while exploiting multiple computational resources such as SIFT, PolyPhen-2, FATHMM, SNPs&Go mCSM, DynaMut2, MAESTROweb, PremPS, MutPred2, and PhD-SNP. The sequence- and structure-based tools highlighted 10 amino acid substitutions that were deleterious and destabilizing. Subsequently, out of these 10 mutations, eight variants (Y32C, Y32D, P34S, V39E, C83R, C83Y, V85M, and H87Q) were identified as pathogenic by disease phenotype predictors. Finally, two pathogenic variants (Y32C and P34S) were found to reduce the solubility of the protein, suggesting their propensity to form protein aggregates. These variants also exhibited higher residual frustration within the protein structure. Considering these findings, the study hypothesized that the identified variants of IGHG1 may compromise its function and potentially contribute to HD pathogenesis.

4.
Int J Biol Macromol ; 268(Pt 1): 131493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608983

RESUMO

Chitosan (CTS), has emerged as a highly intriguing biopolymer with widespread applications, drawing significant attention in various fields ranging from medicinal to chemosensing. Key characteristics of chitosan include solubility, biocompatibility, biodegradability and reactivity, making it versatile in numerous sectors. Several derivatives have been documented for their diverse therapeutic properties, such as antibacterial, antifungal, anti-diabetic, anti-inflammatory, anticancer and antioxidant activities. Furthermore, these compounds serve as highly sensitive and selective chemosensor for the detection of various analytes such as heavy metal ions, anions and various other species in agricultural, environmental and biological matrixes. CTS derivatives interacting with these species and give analytical signals. In this review, we embark on an exploration of the latest advancements in CTS-based materials, emphasizing their noteworthy contributions to medicinal chemistry spanning the years from 2021 to 2023. The intrinsic biological and physiological properties of CTS make it an ideal platform for designing materials that interact seamlessly with biological systems. The review also explores the utilization of chitosan-based materials for the development of colorimetric and fluorimetric chemosensors capable of detecting metal ions, anions and various other species, contributing to advancements in environmental monitoring, healthcare diagnostics, and industrial processes.


Assuntos
Quitosana , Quitosana/química , Humanos , Materiais Biocompatíveis/química , Animais
5.
J Biomol Struct Dyn ; 42(7): 3459-3471, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37261484

RESUMO

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an essential role in signal transduction across different cell types. In the context of allergy and autoimmune disorders, it is a crucial regulator of immune receptor signaling in inflammatory cells such as B cells, mast cells, macrophages, and neutrophils. Developing SYK kinase inhibitors has gained significant interest for potential therapeutic applications in neurological and cancer-related conditions. The clinical use of the most advanced SYK inhibitor, Fostamatinib, has been limited due to its unwanted side effects. Thus, a more targeted approach to SYK inhibition would provide a more comprehensive treatment window. In this study, we used a virtual screening approach to identify potential SYK inhibitors from natural compounds from the IMPPAT database. We identified two compounds, Isolysergic acid and Michelanugine, which showed strong affinity and specificity for the SYK binding pocket. All-atom molecular dynamics (MD) simulations were also performed to explore the stability, conformational changes, and interaction mechanism of SYK in complexes with the identified compounds. The identified compounds might have the potential to be developed into promising SYK inhibitors for the treatment of various diseases, including autoimmune disorders, cancer, and inflammatory diseases. This work aims to identify potential phytochemicals to develop a new protein kinase inhibitor for treating advanced malignancies by providing an updated understanding of the role of SYK.Communicated by Ramaswamy H. Sarma.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Quinase Syk , Proteínas Tirosina Quinases , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
6.
J Biomol Struct Dyn ; 42(6): 2965-2975, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37184150

RESUMO

Tropomyosin receptor kinase B (TrkB), also known as neurotrophic tyrosine kinase receptor type 2 (NTRK2), is a protein that belongs to the family of receptor tyrosine kinases (RTKs). NTRK2 plays a crucial role in regulating the development and maturation of the central nervous system (CNS) and peripheral nervous system (PNS). Elevated TrkB expression levels observed in different pathological conditions make it a potential target for therapeutic interventions against neurological disorders, including depression, anxiety, Alzheimer's disease, Parkinson's disease, and certain types of cancer. Targeting TrkB using small molecule inhibitors is a promising strategy for the treatment of a variety of neurological disorders. In this research, a systematic virtual screening was carried out on phytoconstituents found in the IMPPAT library to identify compounds potentially inhibiting TrkB. The retrieved compounds from the IMPPAT library were first filtered using Lipinski's rule of five. The compounds were then sorted based on their docking score and ligand efficiency. In addition, PAINS, ADMET, and PASS evaluations were carried out for selecting drug-like compounds. Finally, in interaction analysis, we found two phytoconstituents, Wedelolactone and 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMCA), which possessed considerable docking scores and specificity on the TrkB ATP-binding pocket. The selected compounds were further assessed employing molecular dynamics (MD) simulations and essential dynamics. The results revealed that the elucidated compounds bind well with the TrkB binding pocket and lead to fewer conformations fluctuations. This study highlighted using phytoconstituents, Wedelolactone and DMCA as starting leads in developing novel TrkB inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Doenças do Sistema Nervoso , Humanos , Tropomiosina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
7.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139037

RESUMO

Cathepsin L (CTSL) expression is dysregulated in a variety of cancers. Extensive empirical evidence indicates their direct participation in cancer growth, angiogenic processes, metastatic dissemination, and the development of treatment resistance. Currently, no natural CTSL inhibitors are approved for clinical use. Consequently, the development of novel CTSL inhibition strategies is an urgent necessity. In this study, a combined machine learning (ML) and structure-based virtual screening strategy was employed to identify potential natural CTSL inhibitors. The random forest ML model was trained on IC50 values. The accuracy of the trained model was over 90%. Furthermore, we used this ML model to screen the Biopurify and Targetmol natural compound libraries, yielding 149 hits with prediction scores >0.6. These hits were subsequently selected for virtual screening using a structure-based approach, yielding 13 hits with higher binding affinity compared to the positive control (AZ12878478). Two of these hits, ZINC4097985 and ZINC4098355, have been shown to strongly bind CTSL proteins. In addition to drug-like properties, both compounds demonstrated high affinity, ligand efficiency, and specificity for the CTSL binding pocket. Furthermore, in molecular dynamics simulations spanning 200 ns, these compounds formed stable protein-ligand complexes. ZINC4097985 and ZINC4098355 can be considered promising candidates for CTSL inhibition after experimental validation, with the potential to provide therapeutic benefits in cancer management.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Catepsina L/metabolismo , Ligantes , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Simulação de Acoplamento Molecular
8.
Front Chem ; 11: 1248458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705997

RESUMO

Plumbagin (PLM), a plant derivative, is well known for a wide range of therapeutic effects in humans including anti-cancer, anti-inflammatory, anti-oxidant, and anti-microbial. Cytotoxic and genotoxic potential of this phytochemical has been studied which demands further insight. DNA being a major target for several drugs was taken to study against PLM to understand its effects on the cellular system. UV-Vis spectroscopy has indicated the binding of PLM to ctDNA and dye displacement assays have confirmed the formation of PLM-ctDNA complex. The insignificant changes in circular dichroism spectra suggested that PLM is not affecting the structural makeup of the ctDNA, hence the binding could be peripheral and not intercalating. Further, the relative viscosity and minimal change in melting temperature upon the complex formation supported this finding and confirmed the groove binding of PLM. Molecular docking analysis and simulation studies also show PLM as a minor groove binder to DNA and provide details on the interaction dynamics of PLM-DNA complex. Docking followed by a 100 ns simulation reveals the negative Gibbs free energy change (∆G = -6.6 kcal mol-1), and the formation of a stable complex. The PLM- DNA complex with stable dynamics was further supported by different parameters including RMSD, RMSF, SASA, Rg, and the energy profile of interaction. This study provides an insight into the cytotoxic and genotoxic mechanism of PLM which can be a crucial step forward to exploit its therapeutic potential against several diseases including cancer.

9.
OMICS ; 27(8): 393-401, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37624678

RESUMO

Kidney renal cell carcinoma (KIRC) is the most common type of renal cancer. Kidney malignancies have been ranked in the top 10 most frequently occurring cancers. KIRC is a prevalent malignancy with a poor prognosis. The disease has risen for the last 40 years, and robust biomarkers for KIRC are needed for precision/personalized medicine. In this bioinformatics study, we utilized genomic data of KIRC patients from The Cancer Genome Atlas for biomarker discovery. A total of 314 samples were used in this study. We identified many differentially expressed genes (DEGs) categorized as upregulated or downregulated. A protein-protein interaction network for the DEGs was then generated and analyzed using the Search Tool for the Retrieval of Interacting Genes plugin of Cytoscape. A set of 10 hub genes was selected based on the Maximum Clique Centrality score defined by the CytoHubba plugin. The elucidated set of genes, that is, CALCA, CRH, TH, CHAT, SLC18A3, FSHB, MYH6, CAV3, KCNA4, and GBX2, were then categorized as potential candidates to be explored as KIRC biomarkers. The survival analysis plots for each gene suggested that alterations in CHAT, CAV3, CRH, MYH6, SLC18A3, and FSHB resulted in decreased survival of KIRC patients. In all, the results suggest that genomic alterations in selected genes can be explored to inform biomarker discovery and for therapeutic predictions in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Genômica , Medicina de Precisão , Neoplasias Renais/genética , Rim
10.
Front Chem ; 11: 1200490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284581

RESUMO

Glycogen synthase kinase-3 (GSK3ß), a serine/threonine protein kinase, has been discovered as a novel target for anticancer drugs. Although GSK3ß is involved in multiple pathways linked to the etiology of various cancers, no specific GSK3ß inhibitor has been authorized for cancer therapy. Most of its inhibitors have toxicity effects therefore, there is a need to develop safe and more potent inhibitors. In this study, a library of 4,222 anti-cancer compounds underwent rigorous computational screening to identify potential candidates for targeting the binding pocket of GSK3ß. The screening process involved various stages, including docking-based virtual screening, physicochemical and ADMET analysis, and molecular dynamics simulations. Ultimately, two hit compounds, BMS-754807 and GSK429286A, were identified as having high binding affinities to GSK3ß. BMS-754807 and GSK429286A exhibited binding affinities of -11.9, and -9.8 kcal/mol, respectively, which were greater than that of the positive control (-7.6 kcal/mol). Further, molecular dynamics simulations for 100 ns were employed to optimize the interaction between the compounds and GSK3ß, and the simulations demonstrated that the interaction was stable and consistent throughout the study. These hits were also anticipated to have good drug-like properties. Finally, this study suggests that BMS-754807 and GSK429286A may undergo experimental validation to evaluate their potential as cancer treatments in clinical settings.

11.
Biomed Pharmacother ; 163: 114710, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37141737

RESUMO

α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.


Assuntos
Neoplasias , Xantonas , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Xantonas/farmacologia , Xantonas/uso terapêutico , Xantonas/química , Solubilidade , Neoplasias/tratamento farmacológico
12.
Int J Biol Macromol ; 224: 188-195, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257368

RESUMO

Microtubule-affinity regulating kinase 4 (MARK4) is linked with the development of cancer, diabetes and neurodegenerative diseases. Due to its direct role in the hyperphosphorylation of tau protein, MARK4 is considered as an attractive target to fight Alzheimer's disease (AD) and neuroinflammation. In the present study, we have selected Harmaline (HAR), an alkaloid of Paganum harmala, to investigate its MARK4 inhibitory potential and its binding mechanism. Molecular docking and fluorescence binding studies were carried out to estimate the binding affinity of the HAR with the MARK4. We observed an excellent binding affinity of HAR to the MARK4 (K = 107 M-1), further complemented by isothermal titration calorimetric measurements. In addition, HAR significantly inhibits the kinase activity of MARK4 (IC50 value of 4.46 µM). Structural investigations suggested that HAR binds to the active site pocket and forms several non-covalent interactions with biologically important residues of MARK4. All-atom molecular dynamics simulation studies further advocated that the MARK4-HAR complex is stabilized throughout the trajectory of 200 ns and causes a little conformational change. All these findings suggest that HAR is a potential MARK4 inhibitor that can be implicated in managing MARK4-associated diseases, including AD.


Assuntos
Doença de Alzheimer , Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Harmalina/análise , Harmalina/metabolismo , Ligação Proteica , Doença de Alzheimer/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Microtúbulos/metabolismo , Antineoplásicos/metabolismo
13.
Clin Lab ; 68(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36378000

RESUMO

BACKGROUND: This study evaluates the seroprevalence of immunoglobulin M (IgM) and G (IgG) antibodies against SARS-CoV-2 after two doses of Pfizer-BioNTech COVID-19 vaccination from women with breast cancer in Jazan city Kingdom of Saudi Arabia, antibody detections were performed one month and three months after the administration of the second dose. METHODS: Overall, 103 breast cancer patients were included. Individuals who had had two doses of Pfizer-BioNTech vaccine, patients who were earlier diagnosed with COVID-19 infection, had not finalized immunization plan, or who received the second dose recently were excluded from the study. The antibodies detection test was run according to the manufacturer's directions of Viva Diag™ SARS-CoV-2 IgM/IgG Rapid Test (COVID-19 IgM/IgG Rapid Test). RESULTS: This study included 62 (60.2%) and 41 (39.8%) patients with invasive ductal carcinoma and invasive lobular carcinoma, respectively. The age, median and interquartile range (IQR) was 54.0 (26) years. Regarding reactivity of antibodies, after one month IgM antibody showed 64 (62.1%) positive and 39 (37.9%) negative while IgG antibody showed positive results in all patients. After three months IgM antibody showed 44 (42.7%) positive and 59 (57.3%) negative, while IgG showed 87 (84.5%) positive and 16 (15.5%) negative. There were significant differences in the IgM and IgG seropositivity. There were 19.3% patients with ductal carcinoma who were positive and then turned negative versus 17.7% who were positive and then turned negative, respectively (p < 0.001). There were significant differences in IgM antibody positivity among different age groups. CONCLUSIONS: Our results recommend the importance of screening for an antibody response for breast cancer patient after immunization in order to reveal persons who need early and late extra enhancing vaccine dose. Upcoming studies recommended to estimate different methods that raise cancer patients' immune response.


Assuntos
Neoplasias da Mama , COVID-19 , Carcinoma Ductal , Humanos , Feminino , Pessoa de Meia-Idade , SARS-CoV-2 , Imunoglobulina M , Estudos Soroepidemiológicos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacina BNT162 , Vacinas contra COVID-19 , Anticorpos Antivirais , Imunoglobulina G
14.
In Vivo ; 36(5): 2414-2421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36099148

RESUMO

BACKGROUND/AIM: Cervical cancer remains a major public health concern. The ratio of CD4+:CD8+ T-cells is used to evaluate the immune system function. This study aimed to explore the CD4+:CD8+ T-cell ratio in relation to the glycemic status, inflammatory markers, vitamin D, and vitamin B12 in patients with early diagnosed cervical cancer. PATIENTS AND METHODS: This is a cross-sectional study. Blood samples were collected for flow cytometry analysis. Information regarding Papanicolaou (Pap) smears and colposcopy investigations were collected from 152 women with type 2 diabetes admitted to East Jeddah Hospital, Jeddah, Saudi Arabia, between January 2018 and January 2021. RESULTS: Patients with early cervical carcinoma and a higher CD4+:CD8+ ratio (>1.2) had a higher C-reactive protein (CRP) level than those with a lower CD4+:CD8+ ratio (Mean±SD=13.75±13.3 vs. 10.85±8.1; p-value=0.034). Patients with early cervical carcinoma, diabetes, and higher CD4+:CD8+ ratio (>1.2) had a higher blood HbA1c percent than those with a lower CD4+:CD8+ ratio. CONCLUSION: A high CD4+:CD8+ T-cells ratio was associated with an increased HbA1c% and CRP levels in women with diabetes diagnosed with early cervical carcinoma, which can induce inflammation in early diagnosed patients with cervical cancer.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias do Colo do Útero , Biomarcadores , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Estudos Transversais , Diabetes Mellitus Tipo 2/patologia , Feminino , Hemoglobinas Glicadas , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/patologia
15.
3 Biotech ; 12(8): 174, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845111

RESUMO

Tank-binding kinase 1 (TBK1) is a multifunctional kinase having essential roles in cellular processes, autophagy/mitophagy, and selective clearance of damaged proteins. More than 90 mutations in the TBK1 gene are linked with multiple cancer types, amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Some of these missense mutations disrupt the abilities of TBK1 to dimerize, associate with the mitophagy receptor optineurin (OPTN), autoactivate, or catalyze phosphorylation. Some mutations may cause severe dysregulation of the pathway, while others induce a limited disruption. Here, we have studied those mutations reported in cancer, ALS and FTD, and subsequently investigated the effect of missense mutations on the structure and function of TBK1 for localized residual frustration change. Out of 33 ALS/FTD causing mutations and 28 oncogenic mutations, 10 mutations and 12 oncogenic mutations showed significant change in the residual frustration. The local frustration plays an important role in the conformation of protein structure in active and inactive kinases. Our analysis reports the change in residual frustration state, conformational change and effect on active and inactive TBK1 function due to ALS/FTD causing and oncogenic missense mutations. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03240-0.

16.
PLoS One ; 17(5): e0267084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507592

RESUMO

Single amino-acid substitution in a protein affects its structure and function. These changes are the primary reasons for the advent of many complex diseases. Analyzing single point mutations in a protein is crucial to see their impact and to understand the disease mechanism. This has given many biophysical resources, including databases and web-based tools to explore the effects of mutations on the structure and function of human proteins. For a given mutation, each tool provides a score-based outcomes which indicate deleterious probability. In recent years, developments in existing programs and the introduction of new prediction algorithms have transformed the state-of-the-art protein mutation analysis. In this study, we have performed a systematic study of the most commonly used mutational analysis programs (10 sequence-based and 5 structure-based) to compare their prediction efficiency. We have carried out extensive mutational analyses using these tools for previously known pathogenic single point mutations of five different proteins. These analyses suggested that sequence-based tools, PolyPhen2, PROVEAN, and PMut, and structure-based web tool, mCSM have a better prediction accuracy. This study indicates that the employment of more than one program based on different approaches should significantly improve the prediction power of the available methods.


Assuntos
Proteínas , Software , Algoritmos , Substituição de Aminoácidos , Biologia Computacional/métodos , Humanos , Internet , Proteínas/química , Proteínas/genética
17.
Clin Lab ; 68(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35443576

RESUMO

BACKGROUND: Vitamin D is a locally acting hormone, which plays a major role in skeletal health. Previous studies reported an important role of vitamin D in modulation of inflammatory response. We aimed to investigate the role of vitamin D deficiency and hypoxia-inducible factor (HIF-1α) as markers for the progression of diabetic nephropathy in Saudi patients with type 2 diabetes mellitus (T2DM). METHODS: We included 174 Saudi patients with T2DM in addition to 60 healthy control subjects. Patients were classified according to urinary Albumin to Creatinine Ratio (ACR) into three groups: Group AI: ACR < 30 µg/mg, Group AII: ACR levels of 30 - 300 µg/mg and Group AIII: ACR > 300 µg/mg. We estimated fasting blood glucose, HbA1c, lipid profile, serum creatinine, hemoglobin concentration (Hb), estimated glomerular filtration rate (eGFR), urine albumin/creatinine ratio, serum 25 hydroxyvitamin D, calcium, parathyroid hormone (PTH), tumor necrosis factor (TNF-α), C- reactive protein (CRP), and hypoxia-inducible factor (HIF-1α). RESULTS: There was a significant difference among studied groups regarding serum levels of vitamin D, calcium, PTH, TNF-α, CRP, and HIF-1α levels. The level of vitamin D was lower in diabetic patients in comparison to the controls and was significantly related to the severity of renal nephropathy as indicated by the level of albumin in urine. Moreover, vitamin D levels showed significant negative correlation with the inflammatory markers: TNF-α, CRP, and HIF-1α levels. CONCLUSIONS: Vitamin D deficiency and elevated HIF-1α serum levels showed a significant correlation to progression of nephropathy in Saudi patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Deficiência de Vitamina D , Albuminas , Biomarcadores , Cálcio , Creatinina , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/diagnóstico , Feminino , Humanos , Hipóxia , Masculino , Hormônio Paratireóideo , Fator de Necrose Tumoral alfa , Vitamina D , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/diagnóstico , Vitaminas
18.
RSC Adv ; 12(13): 7872-7882, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424745

RESUMO

Casein kinase 2 (CK2) is a conserved serine/threonine-protein kinase involved in hematopoietic cell survival, cell cycle control, DNA repair, and other cellular processes. It plays a significant role in cancer progression and viral infection. CK2 is considered a potential drug target in cancers and COVID-19 therapy. In this study, we have performed a virtual screening of phytoconstituents from the IMPPAT database to identify some potential inhibitors of CK2. The initial filter was the physicochemical properties of the molecules following the Lipinski rule of five. Then binding affinity calculation, PAINS filter, ADMET, and PASS analyses followed by interaction analysis were carried out to discover nontoxic and better hits. Finally, two compounds, stylopine and dehydroevodiamines with appreciable affinity and specific interaction towards CK2, were identified. Their time-evolution analyses were carried out using all-atom molecular dynamics simulation, principal component analysis and free energy landscape. Altogether, we propose that stylopine and dehydroevodiamines can be further explored in in vitro and in vivo settings to develop anticancer and antiviral therapeutics.

19.
Microorganisms ; 10(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336169

RESUMO

Background: Prolactin inducible protein (PIP) is a small secretary glycoprotein present in most biological fluids and contributes to various cellular functions, including cell growth, fertility, antitumor, and antifungal activities. Objectives: The present study evaluated the antibacterial activities of recombinant PIP against multiple broad-spectrum MDR bacterial strains. Methods: The PIP gene was cloned, expressed and purified using affinity chromatography. Disk diffusion, broth microdilution, and growth kinetic assays were used to determine the antibacterial activities of PIP. Results: Disk diffusion assay showed that PIP has a minimum and maximum zone of inhibition against E. coli and P. aeruginosa, respectively, compared to the reference drug ampicillin. Furthermore, growth kinetics studies also suggested that PIP significantly inhibited the growth of E. coli and P. aeruginosa. The minimum inhibitory concentration of PIP was 32 µg/mL for E. coli (443), a standard bacterial strain, and 64 µg/mL for Bacillus sp. (LG1), an environmental multidrug-resistant (MDR) strain. The synergistic studies of PIP with ampicillin showed better efficacies towards selected bacterial strains having MDR properties. Conclusion: Our findings suggest that PIP has a broad range of antibacterial activities with important implications in alleviating MDR problems.

20.
PLoS One ; 17(2): e0263693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35148332

RESUMO

Cyclin-dependent kinase 6 (CDK6) is an important protein kinase that regulates cell growth, development, cell metabolism, inflammation, and apoptosis. Its overexpression is associated with reprogramming glucose metabolism through alternative pathways and apoptosis, which ultimately plays a significant role in cancer development. In the present study, we have investigated the structural and conformational changes in CDK6 at varying pH employing a multi-spectroscopic approach. Circular dichroism (CD) spectroscopy revealed at extremely acidic conditions (pH 2.0-4.0), the secondary structure of CDK6 got significantly disrupted, leading to aggregates formation. These aggregates were further characterized by employing Thioflavin T (ThT) fluorescence. No significant secondary structural changes were observed over the alkaline pH range (pH 7.0-11.0). Further, fluorescence and UV spectroscopy revealed that the tertiary structure of CDK6 was disrupted under extremely acidic conditions, with slight alteration occurring in mild acidic conditions. The tertiary structure remains intact over the entire alkaline range. Additionally, enzyme assay provided an insight into the functional aspect of CDK at varying pH; CDK6 activity was optimal in the pH range of 7.0-8.0. This study will provide a platform that provides newer insights into the pH-dependent dynamics and functional behavior of CDK6 in different CDK6 directed diseased conditions, viz. different types of cancers where changes in pH contribute to cancer development.


Assuntos
Clonagem Molecular/métodos , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/metabolismo , Apoptose , Ciclo Celular , Proliferação de Células , Dicroísmo Circular , Quinase 6 Dependente de Ciclina/genética , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA