Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796869

RESUMO

Despite the widespread usage to safeguard crops and manage pests, pesticides have detrimental effects on the environment and human health. The necessity to find sustainable agricultural techniques and meet the growing demand for food production has spurred the quest for pesticide substitutes other than traditional ones. The unique qualities of nanotechnology, including its high surface area-to-volume ratio, controlled release, and better stability, have made it a promising choice for pest management. Over the past ten years, there has been a noticeable growth in the usage of nanomaterials for pest management; however, concerns about their possible effects on the environment and human health have also surfaced. The purpose of this review paper is to give a broad overview of the worldwide trends and environmental effects of using nanomaterials in place of pesticides. The various types of nanomaterials, their characteristics, and their possible application in crop protection are covered. The limits of the current regulatory frameworks for nanomaterials in agriculture are further highlighted in this review. Additionally, it describes how standard testing procedures must be followed to assess the effects of nanomaterials on the environment and human health before their commercialization. In order to establish sustainable and secure nanotechnology-based pest control techniques, the review concludes by highlighting the significance of taking into account the possible hazards and benefits of nanomaterials for pest management and the necessity of an integrated approach. It also emphasizes the importance of more investigation into the behavior and environmental fate of nanomaterials to guarantee their safe and efficient application in agriculture.


Assuntos
Agricultura , Nanoestruturas , Praguicidas , Controle de Pragas/métodos , Nanotecnologia , Humanos , Proteção de Cultivos
2.
Plants (Basel) ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38794400

RESUMO

Southwestern China is receiving excessive chemical fertilizers to meet the challenges of continuous cropping. These practices are deteriorating the soil environment and affecting tobacco (Nicotiana tabacum L.) yield and quality adversely. A novel microbially enriched biochar-based fertilizer was synthesized using effective microorganisms, tobacco stalk biochar and basal fertilizer. A field-scale study was conducted to evaluate the yield response of tobacco grown on degraded soil amended with our novel biochar-based microbial fertilizer (BF). Four treatments of BF (0%, 1.5%, 2.5% and 5%) were applied in the contaminated field to grow tobacco. The application of BF1.5, BF2.5 and BF5.0 increased the available water contents by 9.47%, 1.18% and 2.19% compared to that with BF0 respectively. Maximum growth of tobacco in terms of plant height and leaf area was recorded for BF1.5 compared to BF0. BF1.5, BF2.5 and BF5.0 increased SPAD by 13.18-40.53%, net photosynthetic rate by 5.44-60.42%, stomatal conductance by 8.33-44.44%, instantaneous water use efficiency by 55.41-93.24% and intrinsic water use efficiency by 0.09-24.11%, while they decreased the intercellular CO2 concentration and transpiration rate by 3.85-6.84% and 0.29-47.18% relative to BF0, respectively (p < 0.05). The maximum increase in tobacco yield was recorded with BF1.5 (23.81%) compared to that with BF0. The present study concludes that the application of BF1.5 improves and restores the degraded soil by improving the hydraulic conductivity and by increasing the tobacco yield.

3.
Heliyon ; 10(3): e24712, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317992

RESUMO

The contamination of farm soils with heavy metals (HMs) has raised significant concerns due to the increased bioavailability and accumulation of HMs in agricultural food crops. To address this issue, a survey experiment was conducted in the suburbs of Multan and Faisalabad to investigate the spatial distribution, bioaccumulation, translocation, and health risks of cadmium (Cd) and lead (Pb) in agricultural crops. The results show a considerable concentration of Cd and Pb in soils irrigated with wastewater, even though these levels were below the permissible limits in water and soil matrices. The pollution index for Cd was mostly greater than 1 at the selected sites, indicating its accumulation in soil over time due to wastewater irrigation. Conversely, the pollution index for Pb was below 1 at all sites. Among the plants, Zea mays accumulated the highest concentration of Cd and Pb. The translocation factor from soil to root was highest for Brassica olearecea (7.037 for Cd) and Zea mays (6.383 for Pb). The target hazard quotient (THQ) value of Cd exceeded the non-carcinogenic limit for most vegetables. The highest value was found in Allium cepa (5.256) and the lowest in Allium sativum (0.040). In contrast, the THQ level of Pb was below the non-carcinogenic limit for most vegetables, except for Allium cepa (1.479), Solanum lycopersicum (1.367), and Solanum tuberosum (1.326). The study highlights that Allium cepa poses the highest health risk for humans, while Medicago sativa poses the highest risk for animals due to Cd and Pb contamination. These results underscore the urgent need for effective measures to mitigate the health risks associated with HM contamination in crops and soils.

4.
Environ Pollut ; 344: 123365, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237853

RESUMO

Cadmium (Cd) accumulates in the vegetative tissues of rice and wheat crops, posing a serious threat in the food chain. A long-term field experiment was conducted to investigate the effects of rice husk biochar (RHB), farm manure (FM), press mud (PrM), and poultry manure (PM) on the growth, yield, and economics of wheat and rice crops grown with sewage water. The results showed that RHB increased wheat plant height (27%, 66%, 70%), spike-length (33%, 99%, 56%), straw yield (21%, 51%, 49%), and grain yield (42%, 63%, 65%) in year-1, year-2, and year-3, than respective controls. For rice crop, RHB showed the maximum increase in plant height (64%, 92%, 96%), spike length (55%, 95%, 90%), straw yield (34%, 53%, 55%), and grain yield (46%, 66%, 69%) each year (2019-2021), compared to their respective controls. The Cd immobilization was increased by the application of RHB while other treatments followed FM > PrM > PM > control in each year of wheat and rice crops. For year-1, benefit-cost ratio remained maximum with the application of FM while for the 2nd and 3rd years in sequence, RHB proved more economical than other treatments and consistently produced wheat and rice with lower Cd concentration than FM, PrM, and PM in grains. This long-term experiment suggested that the application of organic amendments consistently increased biomass of rice and wheat and decreased the Cd concentration in tissues. The RHB remained more effective compared with FM, PrM, and PM in terms of yield, low Cd accumulation and economics of rice and wheat crops.


Assuntos
Carvão Vegetal , Oryza , Poluentes do Solo , Cádmio/análise , Triticum , Solo , Esterco , Poluentes do Solo/análise , Produtos Agrícolas , Grão Comestível/química
5.
Int J Biol Macromol ; 156: 1418-1424, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760000

RESUMO

The removal of arsenic from reservoirs is a matter of great concern in many parts of the world. Since adsorption is one of the most effective methods for treating arsenic-containing media, iron oxide nanorods were prepared using cellulose nanocrystals (CNs) as a template to remove this harmful metal from aqueous solutions. X-ray diffraction (XRD) analysis showed that Fe(OH)3 was formed in the initial stage of the hydrothermal reaction, and Fe(OH)3 was transformed into Fe2O3 as the hydrothermal reaction proceeded. Transmission electron microscopy (TEM) analysis showed that the length of the iron oxide nanorods was nearly 200 nm, and the width was 10 nm. Moreover, adsorption property studies showed that the maximal amount of As(III) and As(V) adsorption, corresponding to levels of 13.866 mg/g and 15.712 mg/g, occurred at pH levels of 7 and 3, respectively. The adsorption process conformed to the quasi-second-order kinetic and Langmuir adsorption isotherm models, indicating that the adsorption process consists of a chemical adsorption of monolayers. The results indicate that this composite can be used as a potential adsorbent for treatment of water containing harmful substances.


Assuntos
Arsênio/isolamento & purificação , Celulose/química , Ferro/química , Nanocompostos/química , Nanopartículas/química , Nanotubos/química , Purificação da Água/métodos , Adsorção , Arsênio/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA