Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 25(4): e13458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619888

RESUMO

Due to rapidly emerging resistance to single-site fungicides in fungal pathogens of plants, there is a burgeoning need for safe and multisite fungicides. Plant antifungal peptides with multisite modes of action (MoA) have potential as bioinspired fungicides. Medicago truncatula defensin MtDef4 was previously reported to exhibit potent antifungal activity against fungal pathogens. Its MoA involves plasma membrane disruption and binding to intracellular targets. However, specific biochemical processes inhibited by this defensin and causing cell death have not been determined. Here, we show that MtDef4 exhibited potent antifungal activity against Botrytis cinerea. It induced severe plasma membrane and organelle irregularities in the germlings of this pathogen. It bound to fungal ribosomes and inhibited protein translation in vitro. A MtDef4 variant lacking antifungal activity exhibited greatly reduced protein translation inhibitory activity. A cation-tolerant MtDef4 variant was generated that bound to ß-glucan of the fungal cell wall with higher affinity than MtDef4. It also conferred a greater reduction in the grey mould disease symptoms than MtDef4 when applied exogenously on Nicotiana benthamiana plants, tomato fruits and rose petals. Our findings revealed inhibition of protein synthesis as a likely target of MtDef4 and the potential of its cation-tolerant variant as a peptide-based fungicide.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungicidas Industriais/farmacologia , Plantas/metabolismo , Peptídeos , Defensinas/genética , Defensinas/farmacologia , Defensinas/metabolismo , Cátions , Doenças das Plantas/microbiologia , Botrytis/metabolismo
2.
J Fungi (Basel) ; 9(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754982

RESUMO

White mold disease caused by a necrotrophic ascomycete pathogen Sclerotinia sclerotiorum results in serious economic losses of soybean yield in the USA. Lack of effective genetic resistance to this disease in soybean germplasm and increasing pathogen resistance to fungicides makes white mold difficult to manage. Small cysteine-rich antifungal peptides with multi-faceted modes of action possess potential for development as sustainable spray-on bio-fungicides. We have previously reported that GMA4CG_V6 peptide, a 17-amino acid variant of the MtDef4 defensin-derived peptide GMA4CG containing the active γ-core motif, exhibits potent antifungal activity against the gray mold fungal pathogen Botrytis cinerea in vitro and in planta. GMA4CG_V6 exhibited antifungal activity against an aggressive field isolate of S. sclerotiorum 555 in vitro with an MIC value of 24 µM. At this concentration, internalization of this peptide into fungal cells occurred prior to discernible membrane permeabilization. GMA4CG_V6 markedly reduced white mold disease symptoms when applied to detached soybean leaves, pods, and stems. Its spray application on soybean plants provided robust control of this disease. GMA4CG_V6 at sub-lethal concentrations reduced sclerotia production. It was also non-phytotoxic to soybean plants. Our results demonstrate that GMA4CG_V6 peptide has potential for development as a bio-fungicide for white mold control in soybean.

3.
Plant Cell Rep ; 42(9): 1517-1527, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37378705

RESUMO

KEY MESSAGE: We analyzed the evolutionary pattern of cysteine-rich peptides (CRPs) to infer the relationship between CRP copy number and plant ecotype, and the origin of bi-domains CRPs. Plants produce cysteine-rich peptides (CRPs) that have long-lasting broad-spectrum antimicrobial activity to protect themselves from various groups of pathogens. We analyzed 240 plant genomes, ranging from algae to eudicots, and discovered that CRPs are widely distributed in plants. Our comparative genomics results revealed that CRP genes have been amplified through both whole genome and local tandem duplication. The copy number of these genes varied significantly across lineages and was associated with the plant ecotype. This may be due to their resistance to changing pathogenic environments. The conserved and lineage-specific CRP families contribute to diverse antimicrobial activities. Furthermore, we investigated the unique bi-domain CRPs that result from unequal crossover events. Our findings provide a unique evolutionary perspective on CRPs and insights into their antimicrobial and symbiosis characteristics.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Cisteína/genética , Plantas/genética , Peptídeos/genética , Peptídeos/farmacologia , Anti-Infecciosos/farmacologia , Evolução Molecular , Filogenia
4.
Front Oncol ; 13: 1141755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305575

RESUMO

Plant defensins including Medicago Sativa defensin 1 (MsDef1) are cysteine-rich antifungal peptides which are known for potent broad-spectrum antifungal activity against bacterial or fungal pathogens of plants. The antimicrobial activities of these cationic defensins are attributed to their capacity to bind to cell membranes to create potentially structural defects tin the cell membranes to interact with intracellular target (s) and mediates cytotoxic effects. Our earlier work identified Glucosylceramide (GlcCer) of fungus F. graminearum as a potential target for biological activity. Multi-drug resistant (MDR) cancer cells overexpress GlcCer on the surface of plasma membrane. Hence, MsDef1 may have a potential to bind to GlcCer of MDR cancer cells to induce cell death. We have characterized the three-dimensional structure of MsDef1 and the solution dynamics using of 15N-labeled MsDef1 nuclear magnetic resonance (NMR) spectroscopy which showed that GlcCer binds MsDef1 at two specific sites on the peptide molecule. The ability of MsDef1 to permeate MDR cancer cells was demonstrated by measuring the release of apoptotic ceramide in drug resistant MCF-7R cells. It was also shown that MsDef1 activated dual cell death pathways ceramide and Apoptosis Stimulating Kinase ASK1 by disintegrating GlcCer and oxidizing tumor specific biomarker thioredoxin (Trx) respectively. As a result, MsDef1 sensitizes MDR cancer cells to evoke a better response from Doxorubicin, a front-line chemotherapy for triple negative breast cancer (TNBC) treatment. The combination of MsDef1 and Doxorubicin induced 5 to10-fold greater apoptosis in vitro MDR cells MDA-MB-231R compared to either MsDef1 or Doxorubicin alone. Confocal microscopy revealed that MsDef1 facilitates a) influx of Doxorubicin in MDR cancer cells, b) preferential uptake by MDR cells but not by normal fibroblasts and breast epithelial cells (MCF-10A). These results suggest that MsDef1 targets MDR cancer cells and may find utility as a neoadjuvant chemotherapy. Hence, the extension of antifungal properties of MsDef1 to cancer my result in addressing the MDR problems in cancer.

5.
Mol Plant Pathol ; 24(8): 896-913, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036170

RESUMO

Chemical fungicides have been instrumental in protecting crops from fungal diseases. However, increasing fungal resistance to many of the single-site chemical fungicides calls for the development of new antifungal agents with novel modes of action (MoA). The sequence-divergent cysteine-rich antifungal defensins with multisite MoA are promising starting templates for design of novel peptide-based fungicides. Here, we experimentally tested such a set of 17-amino-acid peptides containing the γ-core motif of the antifungal plant defensin MtDef4. These designed peptides exhibited antifungal properties different from those of MtDef4. Focused analysis of a lead peptide, GMA4CG_V6, showed that it was a random coil in solution with little or no secondary structure elements. Additionally, it exhibited potent cation-tolerant antifungal activity against the plant fungal pathogen Botrytis cinerea, the causal agent of grey mould disease in fruits and vegetables. Its multisite MoA involved localization predominantly to the plasma membrane, permeabilization of the plasma membrane, rapid internalization into the vacuole and cytoplasm, and affinity for the bioactive phosphoinositides phosphatidylinositol 3-phosphate (PI3P), PI4P, and PI5P. The sequence motif RRRW was identified as a major determinant of the antifungal activity of this peptide. While topical spray application of GMA4CG_V6 on Nicotiana benthamiana and tomato plants provided preventive and curative suppression of grey mould disease symptoms, the peptide was not internalized into plant cells. Our findings open the possibility that truncated and modified defensin-derived peptides containing the γ-core sequence could serve as promising candidates for further development of bio-inspired fungicides.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungicidas Industriais/farmacologia , Plantas/microbiologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Defensinas/farmacologia , Defensinas/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Botrytis/metabolismo
6.
Front Mol Biosci ; 9: 783669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252348

RESUMO

Macrophage migration inhibitory factor (MIF) is an inflammatory protein with various non-overlapping functions. It is not only conserved in mammals, but it is found in parasites, fish, and plants. Human MIF is a homotrimer with an enzymatic cavity between two subunits with Pro1 as a catalytic base, activates the receptors CD74, CXCR2, and CXCR4, has functional interactions in the cytosol, and is reported to be a nuclease. There is a solvent channel down its 3-fold axis with a recently identified gating residue as an allosteric site important for regulating, to different extents, the enzymatic activity and CD74 binding and signaling. In this study we explore the consequence of converting the allosteric residue Tyr99 to cysteine (Y99C) and characterize its crystallographic structure, NMR dynamics, stability, CD74 function, and enzymatic activity. In addition to the homotrimeric variant, we develop strategies for expressing and purifying a heterotrimeric variant consisting of mixed wild type and Y99C for characterization of the allosteric site to provide more insight.

7.
Pediatr Res ; 91(3): 545-555, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33767374

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a common respiratory disease of preterm infants. Lower circulatory/intrapulmonary levels of the adipokine, adiponectin (APN), occur in premature and small-for-gestational-age infants and at saccular/alveolar stages of lung development in the newborn rat. However, the role of low intrapulmonary APN during hyperoxia exposure in developing lungs is unknown. METHODS: We test the hypothesis that treatment of hyperoxia-exposed newborn mice with recombinant APN protein attenuates the BPD phenotype characterized by inflammation, impaired alveolarization, and dysregulated vascularization. We used developmentally appropriate in vitro and in vivo BPD modeling systems as well as human lung tissue. RESULTS: We observed reduced levels of intrapulmonary APN in experimental BPD mice and human BPD lungs. APN-deficient (APN-/-) newborn mice exposed to moderate (60% O2) hyperoxia showed a worse BPD pulmonary phenotype (inflammation, enhanced endothelial dysfunction, impaired pulmonary vasculature, and alveolar simplification) as compared to wild-type (WT) mice. Treatment of hyperoxia-exposed newborn WT mice with recombinant APN protein attenuated the BPD phenotype (diminished inflammation, decreased pulmonary vascular injury, and improved pulmonary alveolarization) and improved pulmonary function tests. CONCLUSIONS: Low intrapulmonary APN is associated with disruption of lung development during hyperoxia exposure, while recombinant APN protein attenuates the BPD pulmonary phenotype. IMPACT: Intrapulmonary APN levels were significantly decreased in lungs of experimental BPD mice and human BPD lung tissue at various stages of BPD development. Correlative data from human lung samples with decreased APN levels were associated with increased lung adhesion markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin). Decreased APN levels were associated with endothelial dysfunction and moderate BPD phenotype in APN-deficient, as compared to WT, experimental BPD mice. WT experimental BPD mice treated with recombinant APN protein had an improved pulmonary structural and functional phenotype. Exogenous APN may be considered as a potential therapeutic agent to prevent BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Adiponectina/metabolismo , Animais , Animais Recém-Nascidos , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/metabolismo , Pulmão , Camundongos , Neovascularização Patológica/complicações , Neovascularização Patológica/metabolismo , Ratos
8.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L228-L235, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825492

RESUMO

Preterm infants with bronchopulmonary dysplasia (BPD), characterized by pulmonary inflammation leading to impaired alveolarization and vascular dysregulation, have an increased risk of abnormal lung function in infancy, childhood, and adulthood. These include a heightened risk of pulmonary hypertension, and respiratory illnesses. MicroRNAs (miRNAs) are known to disrupt normal lung development and function by interrupting alveolarization and vascularization resulting in the development of BPD. Among the various miRs involved in BPD, miR34a has been shown to have a significant role in BPD pathogenesis. Targeting miR34a or its downstream targets may be a promising therapeutic intervention for BPD. In this review, we summarize the data on cellular arrest, proliferation, differentiation, epithelial-mesenchymal transition, mitochondrial dysfunction, and apoptosis impacted by miR34a in the development of BPD pulmonary phenotypes while predicting the future perspective of miR34a in BPD.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Regulação da Expressão Gênica , MicroRNAs/genética , Humanos
9.
Pediatr Res ; 89(5): 1126-1135, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32303051

RESUMO

BACKGROUND: Endogenous pulmonary stem cells (PSCs) play an important role in lung development and repair; however, little is known about their role in bronchopulmonary dysplasia (BPD). We hypothesize that an endogenous PSC marker stage-specific embryonic antigen-1 (SSEA-1) and its enzyme, α1,3-fucosyltransferase IX (FUT9) play an important role in decreasing inflammation and restoring lung structure in experimental BPD. METHODS: We studied the expression of SSEA-1, and its enzyme FUT9, in wild-type (WT) C57BL/6 mice, in room air and hyperoxia. Effects of intraperitoneal administration of recombinant human FUT9 (rhFUT9) on lung airway and parenchymal inflammation, alveolarization, and apoptosis were evaluated. RESULTS: On hyperoxia exposure, SSEA-1 significantly decreased at postnatal day 14 in hyperoxia-exposed BPD mice, accompanied by a decrease in FUT9. BPD and respiratory distress syndrome (RDS) in human lungs showed decreased expression of SSEA-1 as compared to their term controls. Importantly, intraperitoneal administration of FUT9 in the neonatal BPD mouse model resulted in significant decrease in pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leakage, alveolar simplification, and cell death in the hyperoxia-exposed BPD mice. CONCLUSIONS: An important role of endogenous PSC marker SSEA-1 and its enzyme FUT9 is demonstrated, indicating early systemic intervention with FUT9 as a potential therapeutic option for BPD. IMPACT: Administration of rhFUT9, an enzyme of endogenous stem cell marker SSEA-1, reduces pulmonary airway (but not lung parenchymal) inflammation, alveolar-capillary leak and cell death in the BPD mouse model. SSEA-1 is reported for the first time in experimental BPD models, and in human RDS and BPD. rhFUT9 treatment ameliorates hyperoxia-induced lung injury in a developmentally appropriate BPD mouse model. Our results have translational potential as a therapeutic modality for BPD in the developing lung.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Fucosiltransferases/uso terapêutico , Antígenos CD15/metabolismo , Pulmão/citologia , Células-Tronco/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
J Perinatol ; 40(11): 1634-1643, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32811975

RESUMO

OBJECTIVE: To quantify and compare levels of potential biomarkers in neonates with (i) Bronchopulmonary dysplasia (BPD); (ii) BPD-associated pulmonary hypertension (BPD-PH); (iii) PH without BPD; and (iv) neonates without lung disease at ~36 weeks postmenstrual age. STUDY DESIGN: Multiple potential biomarkers were measured in plasma samples of 90 patients using a multi-spot enzyme-linked immunosorbent assay. Statistical tests done included one-way ANOVA to compare levels of biomarkers between different groups. RESULTS: Higher levels of ICAM-1 were present in infants with BPD and correlated with its severity. Infants with BPD have significantly higher levels of ANG-2 and lower levels of ANG-1. Infants with PH have higher levels of: IL-6, IL-8, IL-10, and TNF-α. Infants with BPD-PH have significantly lower levels of MCP-1 and higher levels of IL-1ß than infants with PH without BPD. CONCLUSION: ICAM-1 may be used as a specific biomarker for diagnosis of BPD and its severity.


Assuntos
Displasia Broncopulmonar , Hipertensão Pulmonar , Biomarcadores/análise , Displasia Broncopulmonar/diagnóstico , Feminino , Humanos , Hipertensão Pulmonar/diagnóstico , Lactente , Recém-Nascido , Gravidez
11.
J Pediatr Intensive Care ; 9(3): 225-232, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32685255

RESUMO

Infants born extremely preterm are at a high risk of developing bronchopulmonary dysplasia (BPD) which is characterized by large, simplified alveoli, increased inflammation, disrupted and dysregulated vasculogenesis, decreased cell proliferation, and increased cell death in the lungs. Due to lack of specific drug treatments to combat this condition, BPD and its long-term complications have taken a significant toll of healthcare resources. AVR-25, a novel immune modulator experimental compound, was able to partially recover the pulmonary phenotype in the hyperoxia-induced experimental mouse model of BPD. We anticipate that AVR-25 will have therapeutic potential for managing human BPD.

12.
Proc Natl Acad Sci U S A ; 117(27): 16043-16054, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571919

RESUMO

In the indeterminate nodules of a model legume Medicago truncatula, ∼700 nodule-specific cysteine-rich (NCR) peptides with conserved cysteine signature are expressed. NCR peptides are highly diverse in sequence, and some of these cationic peptides exhibit antimicrobial activity in vitro and in vivo. However, there is a lack of knowledge regarding their structural architecture, antifungal activity, and modes of action against plant fungal pathogens. Here, the three-dimensional NMR structure of the 36-amino acid NCR044 peptide was solved. This unique structure was largely disordered and highly dynamic with one four-residue α-helix and one three-residue antiparallel ß-sheet stabilized by two disulfide bonds. NCR044 peptide also exhibited potent fungicidal activity against multiple plant fungal pathogens, including Botrytis cinerea and three Fusarium spp. It inhibited germination in quiescent spores of B. cinerea In germlings, it breached the fungal plasma membrane and induced reactive oxygen species. It bound to multiple bioactive phosphoinositides in vitro. Time-lapse confocal and superresolution microscopy revealed strong fungal cell wall binding, penetration of the cell membrane at discrete foci, followed by gradual loss of turgor, subsequent accumulation in the cytoplasm, and elevated levels in nucleoli of germlings. Spray-applied NCR044 significantly reduced gray mold disease symptoms caused by the fungal pathogen B. cinerea in tomato and tobacco plants, and postharvest products. Our work illustrates the antifungal activity of a structurally unique NCR peptide against plant fungal pathogens and paves the way for future development of this class of peptides as a spray-on fungistat/fungicide.


Assuntos
Antifúngicos/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Simbiose , Sequência de Aminoácidos , Botrytis/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Cisteína/química , Fusarium/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Espectroscopia de Ressonância Magnética , Medicago truncatula/microbiologia , Pichia/metabolismo , Doenças das Plantas/microbiologia , Nicotiana/metabolismo , Nicotiana/microbiologia
14.
Respir Res ; 21(1): 92, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321512

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) has been implicated as a protective factor in the development of bronchopulmonary dysplasia (BPD) and is known to be regulated by MicroRNA-451 (miR-451). The aim of this study was to evaluate the role of miR-451 and the MIF signaling pathway in in vitro and in vivo models of BPD. METHODS: Studies were conducted in mouse lung endothelial cells (MLECs) exposed to hyperoxia and in a newborn mouse model of hyperoxia-induced BPD. Lung and cardiac morphometry as well as vascular markers were evaluated. RESULTS: Increased expression of miR-451 was noted in MLECs exposed to hyperoxia and in lungs of BPD mice. Administration of a miR-451 inhibitor to MLECs exposed to hyperoxia was associated with increased expression of MIF and decreased expression of angiopoietin (Ang) 2. Treatment with the miR-451 inhibitor was associated with improved lung morphometry indices, significant reduction in right ventricular hypertrophy, decreased mean arterial wall thickness and improvement in vascular density in BPD mice. Western blot analysis demonstrated preservation of MIF expression in BPD animals treated with a miR-451 inhibitor and increased expression of vascular endothelial growth factor-A (VEGF-A), Ang1, Ang2 and the Ang receptor, Tie2. CONCLUSION: We demonstrated that inhibition of miR-451 is associated with mitigation of the cardio-pulmonary phenotype, preservation of MIF expression and increased expression of several vascular growth factors.


Assuntos
Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Oxirredutases Intramoleculares/biossíntese , Fatores Inibidores da Migração de Macrófagos/biossíntese , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Fenótipo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Células Cultivadas , Expressão Gênica , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , MicroRNAs/genética , Oligonucleotídeos/farmacologia , Distribuição Aleatória
15.
FASEB J ; 33(12): 13617-13631, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585050

RESUMO

Adiponectin (APN), an adipocyte-derived adipokine, has been shown to limit lung injury originating from endothelial cell (EC) damage. Previously we reported that obese mice with low circulatory APN levels exhibited pulmonary vascular endothelial dysfunction. This study was designed to investigate the cellular and molecular mechanisms underlying the pulmonary endothelium-dependent protective effects of APN. Our results demonstrated that in APN-/- mice, there was an inherent state of endothelium mitochondrial dysfunction that could contribute to endothelial activation and increased susceptibility to LPS-induced acute lung injury (ALI). We noted that APN-/- mice showed decreased expression of mitochondrial biogenesis regulatory protein peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and its downstream proteins nuclear respiratory factor 1, transcription factor A, mitochondrial, and Sirtuin (Sirt)3 and Sirt1 expression in whole lungs and in freshly isolated lung ECs from these mice at baseline and subjected to LPS-induced ALI. We further showed that treating APN-/- mice with PGC-1α activator pyrroloquinoline quinone enhances mitochondrial biogenesis and function in lung endothelium and attenuation of ALI. These results suggest that the pulmonary endothelium-protective properties of APN are mediated, at least in part, by an enhancement of mitochondrial biogenesis through a mechanism involving PGC-1α activation.-Shah, D., Torres, C., Bhandari, V. Adiponectin deficiency induces mitochondrial dysfunction and promotes endothelial activation and pulmonary vascular injury.


Assuntos
Adiponectina/deficiência , Endotélio Vascular/patologia , Inflamassomos , Lesão Pulmonar/etiologia , Erros Inatos do Metabolismo/complicações , Mitocôndrias/patologia , Lesões do Sistema Vascular/etiologia , Adiponectina/fisiologia , Animais , Endotélio Vascular/metabolismo , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Biogênese de Organelas , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
16.
Mol Plant Microbe Interact ; 32(12): 1649-1664, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31425003

RESUMO

Antimicrobial peptides play a pivotal role in the innate immunity of plants. Defensins are cysteine-rich antifungal peptides with multiple modes of action. A novel Oleaceae-specific defensin gene family has been discovered in the genome sequences of wild and cultivated species of a perennial olive tree, Olea europaea. OefDef1.1, a member of this defensin family, potently inhibits the in-vitro growth of ascomycete fungal pathogens Botrytis cinerea and three Fusarium spp. OefDef1.1 rapidly permeabilizes the plasma membrane of the conidial and germling cells of B. cinerea. Interestingly, it induces reactive oxygen species and translocates to the cytoplasm only in the germlings but not in the conidia. In medium containing a high concentration of Na1+, antifungal activity of OefDef1.1 is significantly reduced. Surprisingly, a chimeric OefDef1.1 peptide containing the γ-core motif of a Medicago truncatula defensin, MtDef4, displays Na1+-tolerant antifungal activity. In a phospholipid-protein overlay assay, the chimeric peptide exhibits stronger binding to its phosphoinositide partners than OefDef1.1 and is also more potent in inhibiting gray mold disease on the surface of Nicotiana benthamiana and lettuce leaves than OefDef1.1. Significant differences are observed among the four ascomycete pathogens in their responses to OefDef1.1 in growth medium with or without the elevated concentration of Na1+. The varied responses of closely related ascomycete pathogens to this defensin have implications for engineering disease resistance in plants.


Assuntos
Defensinas , Fusarium , Olea , Defensinas/metabolismo , Defensinas/farmacologia , Fusarium/efeitos dos fármacos , Lactuca/microbiologia , Olea/imunologia , Olea/microbiologia , Nicotiana/microbiologia
17.
Am J Respir Cell Mol Biol ; 60(3): 308-322, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281332

RESUMO

Hyperoxia-induced injury to the developing lung, impaired alveolarization, and dysregulated vascularization are critical factors in the pathogenesis of bronchopulmonary dysplasia (BPD); however, mechanisms for hyperoxia-induced development of BPD are not fully known. In this study, we show that TREM-1 (triggering receptor expressed on myeloid cells 1) is upregulated in hyperoxia-exposed neonatal murine lungs as well as in tracheal aspirates and lungs of human neonates with respiratory distress syndrome and BPD as an adaptive response to survival in hyperoxia. Inhibition of TREM-1 function using an siRNA approach or deletion of the Trem1 gene in mice showed enhanced lung inflammation, alveolar damage, and mortality of hyperoxia-exposed neonatal mice. The treatment of hyperoxia-exposed neonatal mice with agonistic TREM-1 antibody decreased lung inflammation, improved alveolarization, and was associated with diminished necroptosis-regulating protein RIPK3 (receptor-interacting protein kinase 3). Mechanistically, we show that TREM-1 activation alleviates lung inflammation and improves alveolarization through downregulating RIPK3-mediated necroptosis and NLRP3 (nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3) inflammasome activation in hyperoxia-exposed neonatal mice. These data show that activating TREM-1, enhancing angiopoietin 1 signaling, or blocking the RIPK3-mediated necroptosis pathway may be used in new therapeutic interventions to control adverse effects of hyperoxia in the development of BPD.


Assuntos
Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Necroptose/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/metabolismo , Regulação para Baixo/fisiologia , Humanos , Recém-Nascido , Inflamassomos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
18.
Phytopathology ; 109(3): 402-408, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30252607

RESUMO

Plant defensins are small, cysteine-rich antimicrobial peptides. These peptides have previously been shown to primarily inhibit the growth of fungal plant pathogens. Plant defensins have a γ-core motif, defined as GXCX3-9C, which is required for their antifungal activity. To evaluate plant defensins as a potential control for a problematic agricultural disease (alfalfa crown rot), short, chemically synthesized peptides containing γ-core motif sequences were screened for activity against numerous crown rot pathogens. These peptides showed both antifungal and, surprisingly, antibacterial activity. Core motif peptides from Medicago truncatula defensins (MtDef4 and MtDef5) displayed high activity against both plant and human bacterial pathogens in vitro. Full-length defensins had higher antimicrobial activity compared with the peptides containing their predictive γ-core motifs. These results show the future promise for controlling a wide array of economically important fungal and bacterial plant pathogens through the transgenic expression of a plant defensin. They also suggest that plant defensins may be an untapped reservoir for development of therapeutic compounds for combating human and animal pathogens.


Assuntos
Antibacterianos , Antifúngicos , Peptídeos/metabolismo , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Defensinas , Humanos
19.
Am J Respir Cell Mol Biol ; 60(4): 465-477, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30512967

RESUMO

Recent evidence has shown that microRNAs (miRs) are involved in endothelial dysfunction and vascular injury in lung-related diseases. However, the potential role of miR-34a in the regulation of pulmonary endothelial dysfunction, vascular injury, and endothelial cells (ECs) apoptosis in acute lung injury (ALI)/acute lung respiratory distress syndrome is largely unknown. Here, we show that miR-34a-5p was upregulated in whole lungs, isolated ECs from lungs, and ECs stimulated with various insults (LPS and hyperoxia). Overexpression of miR-34a-5p in ECs exacerbated endothelial dysfunction, inflammation, and vascular injury, whereas the suppression of miR-34a-5p expression in ECs and miR-34a-null mutant mice showed protection against LPS- and hyperoxia-induced ALI. Furthermore, we observed that miR-34a-mediated endothelial dysfunction is associated with decreased miR-34a direct-target protein, sirtuin-1, and increased p53 expression in whole lungs and ECs. Mechanistically, we show that miR-34a leads to translocation of p53 and Bax to the mitochondrial compartment with disruption of mitochondrial membrane potential to release cytochrome C into the cytosol, initiating a cascade of mitochondrial-mediated apoptosis in lungs. Collectively, these data show that downregulating miR-34a expression or modulating its target proteins may improve endothelial dysfunction and attenuate ALI.


Assuntos
Lesão Pulmonar Aguda/patologia , Apoptose/fisiologia , Células Endoteliais/patologia , MicroRNAs/genética , Mitocôndrias/metabolismo , Lesão Pulmonar Aguda/genética , Animais , Citocromos c/metabolismo , Citosol/química , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sirtuína 1/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
Front Microbiol ; 9: 934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867843

RESUMO

Defensins are small cysteine-rich endogenous host defense peptides expressed in all higher plants. They are thought to be important players in the defense arsenal of plants against fungal and oomycete pathogens. However, little is known regarding the antibacterial activity of these peptides. The genome of the model legume Medicago truncatula contains 63 genes each encoding a defensin with a tetradisulfide array. A unique bi-domain defensin, designated MtDef5, was recently characterized for its potent broad-spectrum antifungal activity. This 107-amino acid defensin contains two domains, 50 amino acids each, linked by a short peptide APKKVEP. Here, we characterize antibacterial activity of this defensin and its two domains, MtDef5A and MtDef5B, against two economically important plant bacterial pathogens, Gram-negative Xanthomonas campestris and Gram-positive Clavibacter michiganensis. MtDef5 inhibits the growth of X. campestris, but not C. michiganensis, at micromolar concentrations. MtDef5B, but not MtDef5A, exhibits more potent antibacterial activity than its parent MtDef5. MtDef5 and each of its two domains induce distinct morphological changes and cell death in X. campestris. They permeabilize the bacterial plasma membrane and translocate across membranes to the cytoplasm. They bind to negatively charged DNA indicating these peptides may kill bacterial cells by inhibiting DNA synthesis and/or transcription. The cationic amino acids present in the two γ-core motifs of MtDef5 that were previously shown to be important for its antifungal activity are also important for its antibacterial activity. MtDef5 and its more potent single domain MtDef5B have the potential to be deployed as antibacterial agents for control of a Xanthomonas wilt disease in transgenic crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA