Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Translat ; 29: 134-142, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34249611

RESUMO

BACKGROUND: Sclerosteosis, a severe autosomal recessive sclerosing skeletal dysplasia characterised by excessive bone formation, is caused by absence of sclerostin, a negative regulator of bone formation that binds LRP5/6 Wnt co-receptors. Current treatment is limited to surgical management of symptoms arising from bone overgrowth. This study investigated the effectiveness of sclerostin replacement therapy in a mouse model of sclerosteosis. METHODS: Recombinant wild type mouse sclerostin (mScl) and novel mScl fusion proteins containing a C-terminal human Fc (mScl hFc), or C-terminal human Fc with a poly-aspartate motif (mScl hFc PD), were produced and purified using mammalian expression and standard chromatography methods. In vitro functionality and efficacy of the recombinant proteins were evaluated using three independent biophysical techniques and an in vitro bone nodule formation assay. Pharmacokinetic properties of the proteins were investigated in vivo following a single administration to young female wild type (WT) or SOST knock out (SOST-/-) mice. In a six week proof-of-concept in vivo study, young female WT or SOST-/- mice were treated with 10 mg/kg mScl hFc or mScl hFc PD (weekly), or 4.4 mg/kg mScl (daily). The effect of recombinant sclerostin on femoral cortical and trabecular bone parameters were assessed by micro computed tomography (µCT). RESULTS: Recombinant mScl proteins bound to the extracellular domain of the Wnt co-receptor LRP6 with high affinity (nM range) and completely inhibited matrix mineralisation in vitro. Pharmacokinetic assessment following a single dose administered to WT or SOST-/- mice indicated the presence of hFc increased protein half-life from less than 5 min to at least 1.5 days. Treatment with mScl hFc PD over a six week period resulted in modest but significant reductions in trabecular volumetric bone mineral density (vBMD) and bone volume fraction (BV/TV), of 20% and 15%, respectively. CONCLUSION: Administration of recombinant mScl hFc PD partially corrected the high bone mass phenotype in SOST-/- mice, suggesting that bone-targeting of sclerostin engineered to improve half-life was able to negatively regulate bone formation in the SOST-/- mouse model of sclerosteosis. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: These findings support the concept that exogenous sclerostin can reduce bone mass, however the modest efficacy suggests that sclerostin replacement may not be an optimal strategy to mitigate excessive bone formation in sclerosteosis, hence alternative approaches should be explored.

2.
Cytotherapy ; 22(8): 424-435, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522398

RESUMO

BACKGROUND: The periosteum is a highly vascularized, collagen-rich tissue that plays a crucial role in directing bone repair. This is orchestrated primarily by its resident progenitor cell population. Indeed, preservation of periosteum integrity is critical for bone healing. Cells extracted from the periosteum retain their osteochondrogenic properties and as such are a promising basis for tissue engineering strategies for the repair of bone defects. However, the culture expansion conditions and the way in which the cells are reintroduced to the defect site are critical aspects of successful translation. Indeed, expansion in human serum and implantation on biomimetic materials has previously been shown to improve in vivo bone formation. AIM: This study aimed to develop a protocol to allow for the expansion of human periosteum derived cells (hPDCs) in a biomimetic periosteal-like environment. METHODS: The expansion conditions were defined through the investigation of the bioactive cues involved in augmenting hPDC proliferative and multipotency characteristics, based on transcriptomic analysis of cells cultured in human serum. RESULTS: Master regulators of transcriptional networks were identified, and an optimized periosteum-derived growth factor cocktail (PD-GFC; containing ß-estradiol, FGF2, TNFα, TGFß, IGF-1 and PDGF-BB) was generated. Expansion of hPDCs in PD-GFC resulted in serum mimicry with regard to the cell morphology, proliferative capacity and chondrogenic differentiation. When incorporated into a three-dimensional collagen type 1 matrix and cultured in PD-GFC, the hPDCs migrated to the surface that represented the matrix topography of the periosteum cambium layer. Furthermore, gene expression analysis revealed a down-regulated WNT and TGFß signature and an up-regulation of CREB, which may indicate the hPDCs are recreating their progenitor cell signature. CONCLUSION: This study highlights the first stage in the development of a biomimetic periosteum, which may have applications in bone repair.


Assuntos
Materiais Biomiméticos/farmacologia , Redes Reguladoras de Genes , Periósteo/patologia , Soro/metabolismo , Adolescente , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Periósteo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-29494515

RESUMO

Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism (Cyp1b1) and inflammation (TNFα) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.


Assuntos
Poluentes Atmosféricos/toxicidade , Asma/metabolismo , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Emissões de Veículos/toxicidade , Animais , Antígenos de Dermatophagoides , Asma/fisiopatologia , Citocromo P-450 CYP1B1/metabolismo , Feminino , Gasolina , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/metabolismo
4.
Sci Total Environ ; 568: 1102-1109, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27369091

RESUMO

Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress.


Assuntos
Poluentes Atmosféricos/toxicidade , Gasolina/toxicidade , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Feminino , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo
5.
Artigo em Inglês | MEDLINE | ID: mdl-26557249

RESUMO

BACKGROUND: Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. METHODS: Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). RESULTS: Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. CONCLUSIONS: We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke-induced increase in intra-cellular antioxidant enzyme activities only within the smokers with normal lung function, implying that patients with COPD who continue to smoke will experience enhanced oxidative stress, prompting disease progression.

6.
Bioorg Med Chem ; 22(1): 116-25, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24359706

RESUMO

A series of pateamine A (1) derivatives were synthesized for structure/activity relationship (SAR) studies and a selection of previous generation analogs were re-evaluated based on current information regarding the mechanism of action of these translation inhibitors. Structural modifications in the new generation of derivatives focused on alterations to the C19-C22 Z,E-diene and the trienyl side chain of the previously described simplified, des-methyl, des-amino pateamine A (DMDAPatA, 2). Derivatives were tested for anti-proliferative activity in cell culture and for inhibition of mammalian cap-dependent translation in vitro. Activity was highly dependent on the rigidity and conformation of the macrolide and the functionality of the side chain. The only well tolerated substitutions were replacement of the N,N-dimethyl amino group found on the side chain of 2 with other tertiary amine groups. SAR reported here suggests that this site may be modified in future studies to improve serum stability, cell-type specificity, and/or specificity towards rapidly proliferating cells.


Assuntos
Antineoplásicos/farmacologia , Compostos de Epóxi/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Macrolídeos/metabolismo , Tiazóis/metabolismo , Produtos Biológicos , Proliferação de Células , Compostos de Epóxi/imunologia , Fatores de Iniciação em Eucariotos/imunologia , Humanos , Macrolídeos/imunologia , Iniciação Traducional da Cadeia Peptídica , Tiazóis/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA