Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 2(1): 39-42, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21874153

RESUMO

Carboxylic acids with known central nervous system and histone deacetylase (HDAC) inhibitory activities were converted to hydroxamic acids and tested using a suite of in vitro biochemical assays with recombinant HDAC isoforms, cell based assays in human cervical carcinoma Hela cells and primary cultures from mouse forebrain, and a whole animal (Xenopus laevis) developmental assay. Relative to the parent carboxylic acids, two of these analogs exhibited enhanced potency, and one analog showed altered HDAC isoform selectivity and in vivo activity in the Xenopus assay. We discuss potential uses of these novel hydroxamic acids in studies aimed at determining the utility of HDAC inhibitors as memory enhancers and mood stabilizers.

2.
Free Radic Biol Med ; 46(2): 154-62, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18973803

RESUMO

In various organisms, high intracellular manganese provides protection against oxidative damage through unknown pathways. Herein we use a genetic approach in Saccharomyces cerevisiae to analyze factors that promote manganese as an antioxidant in cells lacking Cu/Zn superoxide dismutase (sod1 Delta). Unlike certain bacterial systems, oxygen resistance in yeast correlates with high intracellular manganese without a lowering of iron. This manganese for antioxidant protection is provided by the Nramp transporters Smf1p and Smf2p, with Smf1p playing a major role. In fact, loss of manganese transport by Smf1p together with loss of the Pmr1p manganese pump is lethal to sod1 Delta cells despite normal manganese SOD2 activity. Manganese-phosphate complexes are excellent superoxide dismutase mimics in vitro, yet through genetic disruption of phosphate transport and storage, we observed no requirement for phosphate in manganese suppression of oxidative damage. If anything, elevated phosphate correlated with profound oxidative stress in sod1 Delta mutants. The efficacy of manganese as an antioxidant was drastically reduced in cells that hyperaccumulate phosphate without effects on Mn SOD activity. Non-SOD manganese can provide a critical backup for Cu/Zn SOD1, but only under appropriate physiologic conditions.


Assuntos
Sobrevivência Celular/fisiologia , Sequestradores de Radicais Livres/metabolismo , Estresse Oxidativo/fisiologia , Saccharomyces cerevisiae/fisiologia , Superóxido Dismutase/metabolismo , Aerobiose/fisiologia , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte de Cátions/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Compostos de Manganês/farmacologia , Chaperonas Moleculares , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Superóxido Dismutase/genética , Superóxido Dismutase-1
3.
Cancer Biol Ther ; 3(9): 871-5, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15254427

RESUMO

In an effort to begin developing a non-invasive strategy for in-vivo detection of the cellular DNA damage response, we engineered a molecular beacon to detect expression of p21(WAF1/CIP1), a gene whose transcription is directly activated by the p53 tumor suppressor protein. Introduction of a phosphorothioate-modified p21-beacon by transfection in human tumor cells led to a slight background signal that increased in a dose dependent manner between 50 and 400 nM beacon. Strong nuclear signal was observed following treatment of wild-type p53-expressing human H460 lung cancer cells for 8 hours with the chemotherapeutic agent doxorubicin (adriamycin). Similar induction was observed in wild-type p53-expressing HCT116 cells. Interestingly, following doxorubicin exposure, there was activation of the p21-beacon in p21-null HCT116 cells, which was not observed in p53-null HCT116, or mutant p53-expressing DLD1 cells that are either wild-type or p21-null. Increased signal from the phosphorothioate-modified p21-beacon in doxorubicin-treated cells likely resulted from sequence-specific hybridization as well as sequence-independent cleavage that may occur due to p53-dependent activation of endonucleases during apoptosis. We conclude that activation of p53 by chemotherapy leads to a strong signal from a p21-beacon that may be useful in further testing both in vitro and in vivo. Strategies need to be developed to optimize the gene or damage specificity as well as the sensitivity to therapeutic response of this non-invasive imaging approach.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , Proteínas de Ciclo Celular/biossíntese , Dano ao DNA , Doxorrubicina/farmacologia , Proteína Supressora de Tumor p53/farmacologia , Apoptose , Proteínas de Ciclo Celular/análise , Núcleo Celular , Inibidor de Quinase Dependente de Ciclina p21 , Relação Dose-Resposta a Droga , Endonucleases/farmacologia , Inibidores Enzimáticos/análise , Humanos , Neoplasias Pulmonares/patologia , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA