Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 5(5): 306-320, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35592435

RESUMO

PMBA (2-Pyridin-4-yl-methylene-beta-boswellic acid), screened from among the 21 novel series of semisynthetic analogues of ß-boswellic acid, is being presented as a lead compound for integrative management of KRAS mutant colorectal cancer (CRC), upon testing and analysis for its anticancerous activity on a panel of NCI-60 cancer cell lines and in vivo models of the disease. PMBA (1.7-29 µM) exhibited potent proliferation inhibition on the cell lines and showed sensitivity in microsatellite instability and microsatellite stable (GSE39582 and GSE92921) subsets of KRAS gene (Kirsten rat sarcoma viral oncogene homolog)-mutated colon cell lines, as revealed via flow cytometry analysis. A considerable decrease in mitogen-activated protein kinase pathway downstream effectors was observed in the treated cell lines via the western blot and STRING (Search tool for the retrieval of interacting genes/proteins) analysis. PMBA was further found to target KRAS at its guanosine diphosphate site. Treatment of the cell lines with PMBA showed significant reduction in MGMT promoter methylation but restored MGMT (O6-methylguanine-DNA methyltransferase) messenger ribonucleic acid expression via significant demethylation of the hypermethylated CpG (Cytosine phosphate guanine) sites in the MGMT promoter. A significant decrease in dimethylated H3K9 (Dimethylation of lysine 9 on histone 3) levels in the MGMT promoter in DNA hypo- and hypermethylated HCT-116G13D and SW-620G12V cells was observed after treatment. In the MNU (N-methyl-N-nitrosourea)-induced CRC in vivo model, PMBA instillation restricted and repressed polyp formation, suppressed tumor proliferation marker Ki67 (Marker of proliferation), ablated KRAS-associated cytokine signaling, and decreased mortality. Clinical trial data for the parent molecule revealed its effectiveness against the disease, oral bioavailability, and system tolerance. Comprehensively, PMBA represents a new class of KRAS inhibitors having a therapeutic window in the scope of a drug candidate. The findings suggest that the PMBA analogue could inhibit the growth of human CRC in vivo through downregulation of cancer-associated biomarkers as well as reactivate expression of the MGMT gene associated with increased H3K9 acetylation and H3K4 methylation with facilitated transcriptional activation, which might be important in silencing of genes associated with upregulation in the activity of KRAS.

2.
Cell Physiol Biochem ; 56(2): 180-208, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462471

RESUMO

Cancer is a chaos of uncontrolled cell proliferation that has consistently invented new circuitry programs to operate inside the cell machinery. Globally, cancer statistics account for 65% of mortality worldwide, mainly due to the adoption of lifestyle behaviours. In 2020, FDA approved 40 new drugs, out of which 16 (40%) were approved as cancer drugs. Overall, the risk of dying from cancer decreased, but further reductions in cancer death rates can be accelerated by applying existing cancer control knowledge across all the population segments, emphasising those in the lowest socio-economic and other disadvantaged population. Various therapeutic regimes, including low-molecular-weight inhibitors, targeting oncogenic signaling pathways are under development. However, the pitfall of targeted therapies is the quick emergence of acquired drug resistance encumbered with toxic side effects. Several FDA acclaimed therapeutic legacies or biosimilars earmarked signaling pathways of rare diseases (cystic fibrosis, erythropoietic protoporphyria, neuromyelitis optica spectrum disorder, tenosynovial giant cell tumor, sickle cell disease, systemic sclerosis-associated interstitial lung disease, muscular dystrophy), neurological and psychiatric disorders, infectious diseases, heart, lung, circulatory, endocrine diseases, autoimmune conditions, cancers and blood disorders. When cancer progresses, these signals develop specific characteristics that can be targeted for anti-cancer therapy. The designer inhibitors have emerged as novel pharmaceutical interventions that aim to block the pathways in an effort to reverse the abnormal phenotype of the cancer cells. Numerous cell-signaling channels have evolved and invigorated to make off three-dimensional feedback networks. The magnitude of accessible information by pathways occupies curated information as a consortium. To fully appreciate the pivotal roles that signaling cascades play in tumor development, it is necessary to understand the involved signaling cascades in the interaction between cancer cells. The prime endeavour is to canonically curate all signaling pathways involving cell cycle, EGFR, MAPK, GPCR, PI3K/ AKT/mTOR, immune checkpoints, nuclear receptors, janus kinase, transcription activators etc., involving the manipulation of genetic and nuclear receptors. Here, we will summarize the vast amount of information describing the signals that mediate crosstalk between cancer cells and the targets related to this crosstalk.


Assuntos
Antineoplásicos , Medicamentos Biossimilares , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Medicamentos Biossimilares/farmacologia , Medicamentos Biossimilares/uso terapêutico , Proliferação de Células , Humanos , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
Heliyon ; 8(4): e09103, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35445157

RESUMO

ß-Boswellic acid (ß-BA), a potent NF-kB signaling pathway inhibitor, has shown synergistic anti-cancerous activity (NCT03149081, NCT00243022 and NCT02977936) in various clinical trials as complementary therapies. The study has been conducted to investigate the effect and efficacy of 2-pyridin-4-yl methylene ß-boswellic acid (PMBA) and 5-Flourouracil (5-FU) in combination therapy for the treatment of KRAS mutant colon cancer. Analysis of isobologram showed synergistic combination index (CI > 1) of PMBA and 5-FU against the HCT-116 G13D and SW-620 G12V cell lines. The growth-inhibiting PMBA also caused apoptosis mediating effects with dose-dependent increase in caspase-3 activity, while inhibiting the formation of colonies in combination with 5-FU. As evident, PMBA affected colorectal 3D CSC properties including the ability to self-renew along with the expression of multi-drug resistance genes, viz., ABCB1, ABCC1 and ALDH1A1, ALDH1A2, ALDH1A3, ALDH3A1, and CSC markers like CD44, CD166, EPCAM, OCT-4, SOX-2, and NANOG compared with those in 2D model explaining the expression pattern of oncogenic KRAS G13D, G12V mutation. When examined for plasma level of PMBA (20 mg) and PMBA+5-FU (20 + 40 mg), a time-dependent increase in the level of the drug (5-FU) was detected, indicating its absorption and bioavailability with excellent half-life of the PMBA for both routes of administration (IV and Oral), thereby indicating a new adjuvant therapy for KRAS mutant colon cancer.

4.
Cell Reprogram ; 21(1): 1-10, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30601028

RESUMO

Spermatogonial stem cells (SSCs) self-renew and produce a large number of differentiated germ cells to maintain normal spermatogenesis. However, the growth factors crucial for SSC self-renewal and the mechanism underlying this process remain unclear. In the present study, a serum-free culture media was used to evaluate the effect of several growth factors on the expression of some SSC markers and self-renewal related genes. The putative SSCs were cultured on buffalo Sertoli cell feeder layer in KO-DMEM +10% KOSR. The colony formation was observed between 7 and 10 days. The putative SSC colonies also expressed markers specific for undifferentiated type A spermatogonia and pluripotency markers. After 15 days, relative mRNA expression study revealed that 20 ng/mL concentration of Glial cell line-derived neurotrophic factor (GDNF) upregulated the expression of PLZF, TAF4B, and THY1. Furthermore, supplementation of a combination of 20 ng/mL GDNF, 10 ng/mL basic fibroblast growth factor (bFGF), 1000 IU/mL leukemia inhibitory factor (LIF), and 1 ng/mL colony stimulating factor 1 (CSF1) upregulated the expression of PLZF, TAF4B, BCL6B, and ID4 genes. These results demonstrated that our defined culture media in combination with GDNF, bFGF, LIF, and CSF1 well supported SSC self-renewal.


Assuntos
Células-Tronco Adultas/citologia , Proliferação de Células , Meios de Cultura Livres de Soro/química , Fator 2 de Crescimento de Fibroblastos/química , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Fator Inibidor de Leucemia/química , Fator Estimulador de Colônias de Macrófagos/química , Animais , Búfalos , Células Cultivadas , Masculino , Células de Sertoli/citologia , Espermatogênese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Gene ; 631: 54-67, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28736154

RESUMO

Development of precise and reproducible culture system for in vitro differentiation of embryonic stem (ES) cells into germ cells counts as a major leap forward for understanding not only the remarkable process of gametogenesis, otherwise obscured by limited availability of precursor primordial germ cells (PGCs), but in finally treating the catastrophic infertility. Taking into account the significant role of retinoic acid (RA) during in vivo gametogenesis, we designed the present study to investigate the effects of its stimulation on directing the differentiation of ES cells into germ cells. The effects of RA were analyzed across dose-and-time upon various stages of gametogenesis like PGC induction, meiosis initiation and completion, haploid cell formation and development of the final gamete (oocyte and spermatozoa). Out of the series of RA doses (2, 4, 8, 16, 20 and 30µM), 16µM RA for 8day culture interval was found to induce highest expression of PGC- and meiosis-associated genes like DAZL, VASA, SYCP3, MLH1, TNP1/2 and PRM2, while mature germ cell genes like BOULE and TEKT1 (Spermatocyte markers), GDF9 and ZP2 (Oocyte markers) showed higher expression at 2µM RA dose, suggesting functional concentration-gradient of RA activity. Immunocytochemistry revealed expression of germ lineage-specific markers like: c-KIT, DAZL and VASA (PGC-markers); SYCP3, MLH1 and PROTAMINE1 (Meiotic-markers); ACROSIN and HAPRIN (Spermatocyte-markers); and GDF9 and ZP4 (Oocyte-markers) in optimally differentiated embryoid bodies (EBs) and adherent cultures. We observed significantly reduced (p<0.05) concentration of 5-methyl-2-deoxycytidine in RA-differentiated EBs which is suggestive of the occurrence of methylation erasure. FACS analysis of optimally differentiated cultures detected 3.07% haploid cell population, indicating completion of meiosis. Oocyte-like structures (OLS) were obtained in adherent differentiated cultures. They had a big nucleus and a zona pellucida (ZP4) coat. They showed progression through 2-cell, 4-cell, 8-cell, morula and blastocyst-like structures upon extended culture beyond 14days.

6.
Gene ; 626: 358-366, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28526652

RESUMO

Development of precise and reproducible culture system for in vitro differentiation of embryonic stem (ES) cells into germ cells counts as a major leap forward for understanding not only the remarkable process of gametogenesis, otherwise obscured by limited availability of precursor primordial germ cells (PGCs), but in finally treating the catastrophic infertility. Taking into account the significant role of retinoic acid (RA) during in vivo gametogenesis, we designed the present study to investigate the effects of its stimulation on directing the differentiation of ES cells into germ cells. The effects of RA were analyzed across dose-and-time upon various stages of gametogenesis like PGC induction, meiosis initiation and completion, haploid cell formation and development of the final gamete (oocyte and spermatozoa). Out of the series of RA doses (2, 4, 8, 16, 20 and 30µM), 16µM RA for 8day culture interval was found to induce highest expression of PGC- and meiosis-associated genes like DAZL, VASA, SYCP3, MLH1, TNP1/2 and PRM2, while mature germ cell genes like BOULE and TEKT1 (Spermatocyte markers), GDF9 and ZP2 (Oocyte markers) showed higher expression at 2µM RA dose, suggesting functional concentration-gradient of RA activity. Immunocytochemistry revealed expression of germ lineage-specific markers like: c-KIT, DAZL and VASA (PGC-markers); SYCP3, MLH1 and PROTAMINE1 (Meiotic-markers); ACROSIN and HAPRIN (Spermatocyte-markers); and GDF9 and ZP4 (Oocyte-markers) in optimally differentiated embryoid bodies (EBs) and adherent cultures. We observed significantly reduced (p<0.05) concentration of 5-methyl-2-deoxycytidine in RA-differentiated EBs which is suggestive of the occurrence of methylation erasure. FACS analysis of optimally differentiated cultures detected 3.07% haploid cell population, indicating completion of meiosis. Oocyte-like structures (OLS) were obtained in adherent differentiated cultures. They had a big nucleus and a zona pellucida (ZP4) coat. They showed progression through 2-cell, 4-cell, 8-cell, morula and blastocyst-like structures upon extended culture beyond 14days.


Assuntos
Células-Tronco Embrionárias/citologia , Gametogênese , Células Germinativas/citologia , Tretinoína/farmacologia , Animais , Búfalos , Proteínas de Ciclo Celular/genética , Células Cultivadas , Metilação de DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Meiose/genética
7.
Reprod Fertil Dev ; 29(4): 679-693, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26595369

RESUMO

Cumulus cells provide cellular interactions and growth factors required for oogenesis. In vitro studies of oogenesis are limited primarily because of the paucity of their source, first trimester fetal gonads, and the small number of germ lineage precursor cells present within these tissues. In order to understand this obscure but vitally important process, the present study was designed to direct differentiation of embryonic stem (ES) cells into germ lineage cells. For this purpose, buffalo ES cells were differentiated, as embryoid bodies (EBs) and monolayer adherent cultures, in the presence of different concentrations of cumulus-conditioned medium (CCM; 10%, 20% and 40%) for different periods of culture (4, 8 and 14 days) to identify the optimum differentiation-inducing concentration and time. Quantitative polymerase chain reaction analysis revealed that 20%-40% CCM induced the highest expression of primordial germ cell-specific (deleted in Azoospermia- like (Dazl), dead (Asp-Glu-Ala-Asp) box polypeptide 4 (Vasa also known as DDX4) and promyelocytic leukemia zinc finger protein (Plzf)); meiotic (synaptonemal complex protein 3 (Sycp3), mutl homolog I (Mlh1), transition protein 1/2 (Tnp1/2) and protamine 2 (Prm2); spermatocyte-specific boule-like RNA binding protein (Boule) and tektin 1 (Tekt1)) and oocyte-specific growth differentiation factor 9 (Gdf9) and zona pellucida 2 /3 (Zp2/3)) genes over 8-14 days in culture. Immunocytochemical analysis revealed expression of primordial germ cell (c-KIT, DAZL and VASA), meiotic (SYCP3, MLH1 and PROTAMINE 1), spermatocyte (ACROSIN and HAPRIN) and oocyte (GDF9 and ZP4) markers in both EBs and monolayer differentiation cultures. Western blotting revealed germ lineage-specific protein expression in Day 14 EBs. The significantly lower (P<0.05) concentration of 5-methyl-2-deoxycytidine in differentiated EBs compared to undifferentiated EBs suggests that methylation erasure may have occurred. Oocyte-like structures obtained in monolayer differentiation stained positive for ZONA PELLUCIDA protein 4 and progressed through various embryo-like developmental stages in extended cultures.


Assuntos
Diferenciação Celular/fisiologia , Células do Cúmulo/citologia , Células-Tronco Embrionárias/citologia , Animais , Búfalos , Técnicas de Cultura de Células , Meios de Cultivo Condicionados , Células do Cúmulo/metabolismo , RNA Helicases DEAD-box/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino
8.
Cell J ; 17(2): 264-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199905

RESUMO

OBJECTIVE: In order to retain an undifferentiated pluripotent state, embryonic stem (ES) cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli. MATERIALS AND METHODS: In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP) and immunoflourescence staining of various pluripotency markers. We examined the effect of various factors like fibroblast growth factor 2 (FGF-2), leukemia inhibitory factor (LIF) and Y-27632 to support the growth and maintenance of bubaline ES cells on gelatin coated dishes, in order to establish feeder free culture systems. We also analyzed the effect of feeder-conditioned media on stem cell growth in gelatin based cultures both in the presence as well as in the absence of the growth factors. RESULTS: The results showed that Y-27632, in the presence of FGF-2 and LIF, resulted in higher colony growth and increased expression of Nanog gene. Feeder-Conditioned Medium resulted in a significant increase in growth of buffalo ES cells on gelatin coated plates, however, feeder layer based cultures produced better results than gelatin based cultures. Feeder layers from buffalo fetal fibroblast cells can support buffalo ES cells for more than two years. CONCLUSION: We developed a feeder free culture system that can maintain buffalo ES cells in the short term, as well as feeder layer based culture that can support the long term maintenance of buffalo ES cells.

9.
Cell Reprogram ; 17(4): 306-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26168169

RESUMO

We present the derivation, characterization, and pluripotency analysis of three buffalo embryonic stem cell (buESC) lines, from in vitro-fertilized, somatic cell nuclear-transferred, and parthenogenetic blastocysts. These cell lines were developed for later differentiation into germ lineage cells and elucidation of the signaling pathways involved. The cell lines were established from inner cell masses (ICMs) that were isolated manually from the in vitro-produced blastocysts. Most of the ICMs (45-55%) resulted in formation of primary colonies that were subcultured after 8-10 days, leading subsequently to the formation of three buESC lines, one from each blastocyst type. All the cell lines expressed stem cell markers, such as Alkaline Phosphatase, OCT4, NANOG, SSEA1, SSEA4, TRA-1-60, TRA-1-81, SOX2, REX1, CD-90, STAT3, and TELOMERASE. They differentiated into all three germ layers as determined by ectodermal, mesodermal, and endodermal RNA and protein markers. All of the cell lines showed equal expression of pluripotency markers as well as equivalent differentiation potential into all the three germ layers. The static suspension culture-derived embryoid bodies (EBs) showed greater expression of all the three germ layer markers as compared to hanging drop culture-derived EBs. When analyzed for germ layer marker expression, EBs derived from 15% fetal bovine serum (FBS)-based spontaneous differentiation medium showed greater differentiation across all the three germ layers as compared to those derived from Knock-Out Serum Replacement (KoSR)-based differentiation medium.


Assuntos
Blastocisto/citologia , Búfalos/embriologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Fertilização in vitro , Partenogênese , Animais , Biomarcadores , Diferenciação Celular , Células Clonais , Corpos Embrioides , Células-Tronco Embrionárias/metabolismo , Feminino , Expressão Gênica , Técnicas de Transferência Nuclear
10.
Reprod Fertil Dev ; 26(4): 551-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23656691

RESUMO

The aim of this study was to investigate the transcriptional profile and role of WNT3A signalling in maintaining buffalo embryonic stem (ES) cells in a pluripotent state and in the induction of their differentiation. ES cells were derived from embryos produced by in vitro fertilisation (iESC), parthenogenesis (pESC) and hand-made cloning (cESC). The expression of WNT3A, its receptors and intermediate signalling pathways were found to be conserved in ES cells derived from the three different sources. WNT3A was expressed in ES cells but not in embryoid bodies derived from iESC or in buffalo fetal fibroblast cells. It was revealed by real-time polymerase chain reaction analysis that following supplementation of culture medium with WNT3A (100, 200 or 400ngmL(-1)) a significant increase (P<0.05) was observed in the expression level of ß-CATENIN, which indicated the activation of the canonical WNT pathway. WNT3A, in combination with exogenous fibroblast growth factor-2 and leukaemia inhibitory factor, induced proliferation of undifferentiated ES cells. Differentiation studies showed that WNT3A caused formation of scaffold-like structures and inhibition of differentiation into neuron-like cells. In conclusion, the WNT3A signalling pathway is necessary both for maintaining undifferentiated buffalo ES cells as well as for directing their differentiation.


Assuntos
Búfalos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo , Animais , Búfalos/embriologia , Búfalos/genética , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fator Inibidor de Leucemia/metabolismo , RNA Mensageiro/metabolismo , Receptores Wnt/metabolismo , Transcrição Gênica , Proteína Wnt3A/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA