Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400314, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014972

RESUMO

Stainless steel mesh (SSM) has emerged as a cornerstone in electrochemical applications owing to its exemplary versatility, electrical conductivity, mechanical robustness, and corrosion resistance. This state-of-the-art review delves into the diverse roles of SSM across a spectrum of electrochemical domains, including energy conversion and storage devices, water treatment technologies, electrochemical sensors, and catalysis. We meticulously explore its deployment in supercapacitors, batteries, and fuel cells, highlighting its utility as a current collector, electrode, and separator. The review further discusses the critical significance of SSM in water treatment processes, emphasizing its efficacy in supporting membranes and facilitating electrocoagulation, as well as its novel uses in electrochemical sensing and catalysis, which include electrosynthesis and bioelectrochemistry. Each section delineates the recent advancements, identifies the inherent challenges, and suggests future directions for leveraging SSM in electrochemical technologies. This comprehensive review showcases the current state of knowledge and articulates the novel integration of SSM with emerging materials and technologies, thereby establishing a new paradigm for sustainable and efficient electrochemical applications. Through critical analysis and insightful recommendations, this review positions itself as a seminal contribution, paving the way for researchers and practitioners to harness the full potential of SSM in advancing the electrochemistry frontiers.

2.
Small ; 20(22): e2306665, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150613

RESUMO

Developing efficient, lightweight, and durable all-solid-state supercapacitors is crucial for future energy storage systems. The study focuses on optimizing electrode materials to achieve high capacitance and stability. This study introduces a novel two-step pyrolysis process to synthesize activated carbon nanosheets from jute sticks (JAC), resulting in an optimized JAC-2 material with a high yield (≈24%) and specific surface area (≈2600 m2 g-1). Furthermore, an innovative in situ synthesis approach is employed to synthesize hybrid nanocomposites (NiCoLDH-1@JAC-2) by integrating JAC nanosheets with nickel-cobalt-layered double hydroxide nanoflowers (NiCoLDH). These nanocomposites serve as positive electrode materials and JAC-2 as the negative electrode material in all-solid-state asymmetric hybrid supercapacitors (HSCs), exhibiting remarkable performance metrics. The HSCs achieve a specific capacitance of 750 F g-1, a specific capacity of 209 mAh g-1 (at 0.5 A g-1), and an energy density of 100 Wh kg-1 (at 250 W kg-1) using PVA/KOH solid electrolyte, while maintaining outstanding cyclic stability. Importantly, a density functional theory framework is utilized to validate the experimental findings, underscoring the potential of this novel approach for enhancing HSC performance and enabling the large-scale production of transition metal-based layered double hydroxides.

3.
Chem Asian J ; 18(4): e202201223, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36576425

RESUMO

Energy storage is one of the most stimulating requirements to keep civilization on the wheel of progress. Supercapacitors generally exhibit a high-power density, have a maximum life cycle, quick charging time, and are eco-friendly. Polyaniline (PANI), a conductive polymer, is considered an efficacious electrode material for supercapacitors due to its good electroactivity, including pseudocapacitive behavior. Here, we present the fabrication of a symmetric supercapacitor device based on steel mesh electrodeposited with PANI. Due to its effective conductivity, porous nature, and low cost, steel mesh is a good choice as a current collector to fabricate a high-performance supercapacitor at a low cost. The optimum fabricated supercapacitor has a high specific capacitance of ∼353 mF cm-2 . Furthermore, the supercapacitor obtained an energy density of ∼26.4 µW h cm-2 at a power density of ∼400 µW cm-2 . The fabricated supercapacitor shows high stability, as the initial capacitance remained almost the same after 1000 charge/discharge cycles. PANI is a promising candidate for mass production and wide applications due to its low cost and high performance.

4.
Chem Asian J ; 17(23): e202200897, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194730

RESUMO

Glucose detection is considered a significant area and has remained the topic of considerable attention. Remarkable technological advancements have been observed in diabetes monitoring in the past decades. This continual progress helps to track recent trends in development as well as identify challenging issues in glucose sensor construction. Thus, a comprehensive synopsis of the most recent advancements and developments in the study of nickel (Ni) nanostructure-based sensors for efficient trace-level glucose detection, following non-enzymatic and electrochemical methods, is provided in this review. Moreover, this review is intensively focused on the methodologies for the structure, morphology, preparation, and enforcement of a variety of Ni nanostructures, including Ni nanosheets with metals, Ni nanospheres with metals/mixed metals, Ni-metal nanocomposites, metal nanoparticles-decorated Ni nanowires, Ni nanoparticles, Ni-decorated metal nanotube arrays, Ni nanoneedles and nanorods with metals, nanoporous, nanoplates, nanocoated Ni with metal composites, and Ni-composed hybrid nanostructures. Various demonstrations and categorizations are provided on Ni-based nanostructures for a clear understanding for diverse readers.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Níquel/química , Glucose , Nanoestruturas/química , Técnicas Eletroquímicas , Nanopartículas Metálicas/química , Metais , Eletrodos
5.
Polymers (Basel) ; 14(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054676

RESUMO

Energy generation can be clean and sustainable if it is dependent on renewable resources and it can be prominently utilized if stored efficiently. Recently, biomass-derived carbon and polymers have been focused on developing less hazardous eco-friendly electrodes for energy storage devices. We have focused on boosting the supercapacitor's energy storage ability by engineering efficient electrodes in this context. The well-known conductive polymer, polyaniline (PANI), deposited on nickel foam (NF) is used as a positive electrode, while the activated carbon derived from jute sticks (JAC) deposited on NF is used as a negative electrode. The asymmetric supercapacitor (ASC) is fabricated for the electrochemical studies and found that the device has exhibited an energy density of 24 µWh/cm2 at a power density of 3571 µW/cm2. Furthermore, the ASC PANI/NF//KOH//JAC/NF has exhibited good stability with ~86% capacitance retention even after 1000 cycles. Thus, the enhanced electrochemical performances of ASC are congregated by depositing PANI on NF that boosts the electrode's conductivity. Such deposition patterns are assured by faster ions diffusion, higher surface area, and ample electroactive sites for better electrolyte interaction. Besides advancing technology, such work also encourages sustainability.

6.
Sci Rep ; 11(1): 6945, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767326

RESUMO

Carbon nanosheets are two-dimensional nanostructured materials that have applications as energy storage devices, electrochemical sensors, sample supports, filtration membranes, thanks to their high porosity and surface area. Here, for the first time, carbon nanosheets have been prepared from the stems and leaves of a nettle fibre clone, by using a cheap and straight-forward procedure that can be easily scaled up. The nanomaterial shows interesting physical parameters, namely interconnectivity of pores, graphitization, surface area and pore width. These characteristics are similar to those described for the nanomaterials obtained from other fibre crops. However, the advantage of nettle over other plants is its fast growth and easy propagation of homogeneous material using stem cuttings. This last aspect guarantees homogeneity of the starting raw material, a feature that is sought-after to get a nanomaterial with homogeneous and reproducible properties. To evaluate the potential toxic effects if released in the environment, an assessment of the impact on plant reproduction performance and microalgal growth has been carried out by using tobacco pollen cells and the green microalga Pseudokirchneriella subcapitata. No inhibitory effects on pollen germination are recorded, while algal growth inhibition is observed at higher concentrations of leaf carbon nanosheets with lower graphitization degree.


Assuntos
Carbono/toxicidade , Nanoestruturas/toxicidade , Urtica dioica , Microalgas , Nicotiana , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA