Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992144

RESUMO

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Assuntos
Homozigoto , Infertilidade Masculina , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Paquistão , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Adulto , Linhagem , Astenozoospermia/genética , Astenozoospermia/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Sequenciamento do Exoma , Oligospermia/genética , Oligospermia/patologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia
2.
Cell Discov ; 9(1): 88, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612290

RESUMO

During meiosis, at least one crossover must occur per homologous chromosome pair to ensure normal progression of meiotic division and accurate chromosome segregation. However, the mechanism of crossover formation is not fully understood. Here, we report a novel recombination protein, C12ORF40/REDIC1, essential for meiotic crossover formation in mammals. A homozygous frameshift mutation in C12orf40 (c.232_233insTT, p.Met78Ilefs*2) was identified in two infertile men with meiotic arrest. Spread mouse spermatocyte fluorescence immunostaining showed that REDIC1 forms discrete foci between the paired regions of homologous chromosomes depending on strand invasion and colocalizes with MSH4 and later with MLH1 at the crossover sites. Redic1 knock-in (KI) mice homozygous for mutation c.232_233insTT are infertile in both sexes due to insufficient crossovers and consequent meiotic arrest, which is also observed in our patients. The foci of MSH4 and TEX11, markers of recombination intermediates, are significantly reduced numerically in the spermatocytes of Redic1 KI mice. More importantly, our biochemical results show that the N-terminus of REDIC1 binds branched DNAs present in recombination intermediates, while the identified mutation impairs this interaction. Thus, our findings reveal a crucial role for C12ORF40/REDIC1 in meiotic crossover formation by stabilizing the recombination intermediates, providing prospective molecular targets for the clinical diagnosis and therapy of infertility.

3.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752199

RESUMO

Multiple morphological abnormalities of the sperm flagella (MMAF) are the most severe form of asthenozoospermia due to impaired axoneme structure in sperm flagella. Dynein arms are necessary components of the sperm flagellar axoneme. In this study, we recruited 3 unrelated consanguineous Pakistani families with multiple MMAF-affected individuals, who had no overt ciliary symptoms. Whole-exome sequencing and Sanger sequencing identified 2 cilia and flagella associated protein 57 (CFAP57) loss-of-function mutations (c.2872C>T, p. R958*; and c.2737C>T, p. R913*) recessively segregating with male infertility. A mouse model mimicking the mutation (c.2872C>T) was generated and recapitulated the typical MMAF phenotype of CFAP57-mutated individuals. Both CFAP57 mutations caused loss of the long transcript-encoded CFAP57 protein in spermatozoa from MMAF-affected individuals or from the Cfap57-mutant mouse model while the short transcript was not affected. Subsequent examinations of the spermatozoa from Cfap57-mutant mice revealed that CFAP57 deficiency disrupted the inner dynein arm (IDA) assembly in sperm flagella and that single-headed IDAs were more likely to be affected. Thus, our study identified 2 pathogenic mutations in CFAP57 in MMAF-affected individuals and reported a conserved and pivotal role for the long transcript-encoded CFAP57 in IDAs' assembly and male fertility.


Assuntos
Cílios , Dineínas , Proteínas Associadas aos Microtúbulos , Animais , Humanos , Masculino , Camundongos , Cílios/metabolismo , Dineínas/genética , Dineínas/metabolismo , Flagelos , Sêmen/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação com Perda de Função
4.
Asian J Androl ; 24(3): 255-259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35259782

RESUMO

Asthenoteratozoospermia is one of the most severe types of qualitative sperm defects. Most cases are due to mutations in genes encoding the components of sperm flagella, which have an ultrastructure similar to that of motile cilia. Coiled-coil domain containing 103 (CCDC103) is an outer dynein arm assembly factor, and pathogenic variants of CCDC103 cause primary ciliary dyskinesia (PCD). However, whether CCDC103 pathogenic variants cause severe asthenoteratozoospermia has yet to be determined. Whole-exome sequencing (WES) was performed for two individuals with nonsyndromic asthenoteratozoospermia in a consanguineous family. A homozygous CCDC103 variant segregating recessively with an infertility phenotype was identified (ENST00000035776.2, c.461A>C, p.His154Pro). CCDC103 p.His154Pro was previously reported as a high prevalence mutation causing PCD, though the reproductive phenotype of these PCD individuals is unknown. Transmission electron microscopy (TEM) of affected individuals' spermatozoa showed that the mid-piece was severely damaged with disorganized dynein arms, similar to the abnormal ultrastructure of respiratory ciliary of PCD individuals with the same mutation. Thus, our findings expand the phenotype spectrum of CCDC103 p.His154Pro as a novel pathogenic gene for nonsyndromic asthenospermia.


Assuntos
Astenozoospermia , Dineínas , Astenozoospermia/genética , Astenozoospermia/patologia , Dineínas/genética , Homozigoto , Humanos , Masculino , Proteínas Associadas aos Microtúbulos , Mutação , Mutação de Sentido Incorreto , Cauda do Espermatozoide/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 765639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867808

RESUMO

Male infertility is a prevalent disorder distressing an estimated 70 million people worldwide. Despite continued progress in understanding the causes of male infertility, idiopathic sperm abnormalities such as multiple morphological abnormalities of sperm flagella (MMAF) still account for about 30% of male infertility. Recurrent mutations in DNAH1 have been reported to cause MMAF in various populations, but the underlying mechanism is still poorly explored. This study investigated the MMAF phenotype of two extended consanguineous Pakistani families without manifesting primary ciliary dyskinesia symptoms. The transmission electron microscopy analysis of cross-sections of microtubule doublets revealed a missing central singlet of microtubules and a disorganized fibrous sheath. SPAG6 staining, a marker generally used to check the integration of microtubules of central pair, further confirmed the disruption of central pair in the spermatozoa of patients. Thus, whole-exome sequencing (WES) was performed, and WES analysis identified two novel mutations in the DNAH1 gene that were recessively co-segregating with MMAF phenotype in both families. To mechanistically study the impact of identified mutation, we generated Dnah1 mice models to confirm the in vivo effects of identified mutations. Though Dnah1△iso1/△iso1 mutant mice represented MMAF phenotype, no significant defects were observed in the ultrastructure of mutant mice spermatozoa. Interestingly, we found DNAH1 isoform2 in Dnah1△iso1/△iso1 mutant mice that may be mediating the formation of normal ultrastructure in the absence of full-length protein. Altogether we are first reporting the possible explanation of inconsistency between mouse and human DNAH1 mutant phenotypes, which will pave the way for further understanding of the underlying pathophysiological mechanism of MMAF.


Assuntos
Dineínas/genética , Mutação/genética , Animais , Feminino , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microtúbulos/genética , Fenótipo , Cauda do Espermatozoide/patologia , Espermatozoides/patologia , Teratozoospermia/genética , Teratozoospermia/patologia , Sequenciamento do Exoma/métodos
6.
Front Endocrinol (Lausanne) ; 12: 648141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367061

RESUMO

Sustaining and maintaining the intricate process of spermatogenesis is liable upon hormones and growth factors acting through endocrine and paracrine pathways. The Sertoli cells (SCs) are the major somatic cells present in the seminiferous tubules and are considered to be the main regulators of spermatogenesis. As each Sertoli cell supports a specific number of germ cells, thus, the final number of Sertoli cells determines the sperm production capacity. Similarly, sex hormones are also major regulators of spermatogenesis and they can determine the proliferation of Sertoli cells. In the present review, we have critically and comprehensively discussed the role of sex hormones and some other factors that are involved in Sertoli cell proliferation, differentiation and maturation. Furthermore, we have also presented a model of Sertoli cell development based upon the recent advancement in the field of reproduction. Hence, our review article provides a general overview regarding the sex hormonal pathways governing Sertoli cell proliferation and development.


Assuntos
Hormônios Esteroides Gonadais/sangue , Células de Sertoli/citologia , Espermatogênese/fisiologia , Testículo/metabolismo , Ativinas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Estrogênios/metabolismo , Fertilidade , Hormônio Foliculoestimulante/metabolismo , Humanos , Inibinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Progesterona/metabolismo , Prolactina/metabolismo , Ratos , Receptor de Insulina/metabolismo , Transdução de Sinais , Testosterona/metabolismo , Hormônios Tireóideos/metabolismo , Tretinoína/metabolismo , Proteínas Wnt/metabolismo
7.
Reprod Biol ; 21(3): 100531, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315090

RESUMO

Family with sequence similarity 114 member A2 (Fam114a2) is sperm binding protein that is highly conserved in mammals with homologs both in fungi and plants. Previous studies have demonstrated that miR-762 and P63 are two crucial players of spermatogenesis, and CricFM114A2 regulates their expression. Thus, the current study was focused on describing the role of Fam114a2 in spermatogenesis by generating Fam114a2 knockout (Fam114a2-/-) mice using CRISPR/Cas9 genome editing techniques. We identified that Fam114a2-/- mouse has normal fertility and normal morphology of sperm. Furthermore, histological investigation of testicular and epididymis tissues showed no subtle difference, and seminiferous tubules comprised of all stages of germ cells, including mature spermatozoa in Fam114a2-/- mice. Moreover, cytological investigation of spermatocytes in the progression of prophase I also did not display any notable difference in Fam114a2-/- mice. Additionally, normal expression of p63 and miR-762 was observed in Fam114a2+/+ and Fam114a2-/- testis indicating that Fam114a2 is not involved in the direct regulation of in mice spermatogenesis. Moreover, the removal of Fam114a2 in mouse did not affect the expression of its paralogue Fam114a1 in multiple tissues. Taken together our data determined that Fam114a2 is not essential for male fertility and spermatogenesis in mice.


Assuntos
Fertilidade , MicroRNAs/metabolismo , Proteínas de Neoplasias , Espermatogênese/fisiologia , Transativadores/metabolismo , Animais , Evolução Biológica , Regulação da Expressão Gênica , Masculino , Meiose , Camundongos , Camundongos Knockout , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Transativadores/genética
8.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33438725

RESUMO

CCND1 encodes for Cyclin D1 protein and single-nucleotide polymorphisms (SNPs) can modulate its activity. In the present study, the impact of CCND1 SNPs on structure and/or function of Cyclin D1 protein using in silico tools was investigated. Our analysis revealed only one splice site SNP (c.1988+5G

Assuntos
Neoplasias da Mama/genética , Biologia Computacional/métodos , Ciclina D1/genética , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Ciclina D1/química , Feminino , Mutação da Fase de Leitura , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Mutação de Sentido Incorreto , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA