Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1838: 148966, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688382

RESUMO

Thymus vulgaris and Allium cepa are plants with great medicinal importance. Thymol monoterpene and quercetin, which are present in these plants, have anti-Alzheimer's and antioxidant effects. The objectives of this research were investigating the effects of these compounds on the pathogenesis and progress of Alzheimer's disease in cells modeled by formaldehyde. MTT, flow cytometry, and RT-PCR were used to investigate the toxicity, survival rate and apoptosis of the cells, and the expression level of PP2A, GSK3, NMDAR, BACE1, and APP genes, respectively. Also, the total antioxidant capacity of the modeled cells was measured. The results showed that the two compounds as well as the plants extract and essential oil were able to increase the percentage of cell survival; among them, Thymus vulgaris essential oil had the greatest effect (93.55316 % in 48 h exposure). In addition, quercetin was able to reduce the rate of apoptosis in Alzheimer's cells (4.73 %) which was greater than the effects of other compounds. In general, the essential oil of Thymus vulgaris compared to thymol; and quercetin compared to Allium cepa extract showed more improving effects on the expression of genes involved in the disease. All four compounds increased the antioxidant capacity of the modeled cells compared to the control group, and these effects were almost equal between the compounds. According to the obtained results, both plants, especially Thymus vulgaris can be proposed as candidates to be included in the diet of Alzheimer's patients. In addition, polyphenols thymol and quercetin as derivates from the studied plants can be used in new drugs development for Alzheimer's disease, with greater safety than currently used drugs. These results are significant because most of the drug for Alzheimer's treatments such as cholinesterases (e.g. rivastigmine and donepezil) and memantine are chemically based and have many side effects.


Assuntos
Doença de Alzheimer , Antioxidantes , Óleos Voláteis , Cebolas , Extratos Vegetais , Quercetina , Timol , Thymus (Planta) , Quercetina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Extratos Vegetais/farmacologia , Óleos Voláteis/farmacologia , Ratos , Animais , Timol/farmacologia , Antioxidantes/farmacologia , Células PC12 , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
2.
Biochem Genet ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583096

RESUMO

The Coronavirus disease-2019 (COVID-19) pandemic is a global concern, with updated pharmacological therapeutic strategies needed. Cancer patients have been found to be more susceptible to severe COVID-19 and death, and COVID-19 can also lead to cancer progression. Traditional medicinal plants have long been used as anti-infection and anti-inflammatory agents, and Moringa oleifera (M. oleifera) is one such plant containing natural products such as kaempferol, quercetin, and hesperetin, which can reduce inflammatory responses and complications associated with viral infections and multiple cancers. This review article explores the cellular and molecular mechanisms of action of M. oleifera as an anti-COVID-19 and anti-inflammatory agent, and its potential role in reducing the risk of cancer progression in cancer patients with COVID-19. The article discusses the ability of M. oleifera to modulate NF-κB, MAPK, mTOR, NLRP3 inflammasome, and other inflammatory pathways, as well as the polyphenols and flavonoids like quercetin and kaempferol, that contribute to its anti-inflammatory properties. Overall, this review highlights the potential therapeutic benefits of M. oleifera in addressing COVID-19 and associated cancer progression. However, further investigations are necessary to fully understand the cellular and molecular mechanisms of action of M. oleifera and its natural products as anti-inflammatory, anti-COVID-19, and anti-cancer strategies.

3.
Asian Pac J Cancer Prev ; 25(3): 893-908, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546072

RESUMO

INTRODUCTION: Breast cancer is the most common type of cancer in women. The construction of a competing gene network is an important step in the identification of the role of hub genes in breast cancers. In the current research, we used a number of bioinformatics tools to construct this network in breast cancer and investigated the combined effect of garlic and ginger on mice model of breast cancer. MATERIALS AND METHODS: We chose female mice weighing 18-20 g that were divided into 7 groups including; the cancer group receiving normal saline, different doses of ginger extract (100 and 500 mg/kg), different doses of garlic (50 and 100 mg/kg), tamoxifen (10 mg/ kg) and simultaneous garlic (100 mg/kg) and ginger (500 mg/kg) for 3 weeks intraperitoneal. Then we anesthetized the mice, isolated the tumor, and determined its size. Glutathione reductase and peroxidase levels and HER2, PTEN, and Cullin3 genes expression were measured. RESULTS: We identified 20 hub genes for breast cancer. In animal phase we found that tumor size in all mice receiving garlic and ginger showed a significant decrease compared to the control. Glutathione reductase showed a significant increase in all groups, especially in ginger 500 and combined groups. Glutathione peroxidase increased almost in all groups, especially in ginger 500. Expression of HER2 decreased in all treated groups. Expression of PTEN increased just in the combined group. CONCLUSION: Taken together, we introduce a number of novel promising diagnostic biomarkers for breast cancer. The use of garlic and ginger in the treatment of cancer can be useful. This action is probably through the antioxidant mechanism, and regulation of the expression of cancer related genes such as PTEN.


Assuntos
Neoplasias da Mama , Alho , Zingiber officinale , Humanos , Feminino , Camundongos , Animais , Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Glutationa Redutase , Extratos Vegetais/farmacologia , PTEN Fosfo-Hidrolase/genética
4.
Anticancer Agents Med Chem ; 23(15): 1774-1782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138432

RESUMO

BACKGROUND: Chelidonine is a potent anticancer against several cell lines. However, low bioavailability and water solubility restrict the clinical applications of this compound. OBJECTIVE: The aim of this research was to develop a novel formulation of chelidonine encapsulated in the nanoparticles of poly(d l-lactic-co-glycolic acid) (PLGA) employing vitamin E D-α-tocopherol acid polyethylene glycol 1000 succinate (E TPGS) as a modifier to increase bioavailability. METHODS: Chelidonine-encapsulated PLGA nanoparticles were fabricated using a single emulsion method and modified by various concentrations of E TPGS. Nanoparticles were recognized in terms of morphology, surface charge, drug release, size, drug loading, and encapsulation efficiency to obtain the optimized formulation. The cytotoxicity of different nanoformulations in HT-29 cells was evaluated using the MTT assay. The cells were stained with propidium iodide and annexin V solution to evaluate apoptosis using flow cytometry. RESULTS: Spherical nanoparticles prepared with 2% (w/v) of E TPGS had the optimum formulation in the nanometer size range (153 ± 12.3 nm), with a surface charge of -14.06 ± 2.21 mV, encapsulation efficiency of 95.58 ± 3.47%, drug loading of 33.13 ± 0.19%, and drug release profile of 73.54 ± 2.33. In comparison with non-modified nanoparticles and free chelidonine, E TPGS-modified nanoformulations improved anti-cancer capability even after three-months storage. CONCLUSION: Our results showed that E TPGS is an effective biomaterial for surface modification of nanoparticles, which can serve as a potential treatment for cancer.


Assuntos
Nanopartículas , Poliglactina 910 , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Vitamina E/farmacologia , Ácido Láctico , Polietilenoglicóis , Portadores de Fármacos , Tamanho da Partícula
5.
J Food Biochem ; 46(12): e14506, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369969

RESUMO

Phosphoenolpyruvate carboxykinase (PEPCK) is a key enzyme in the glyconeogenesis pathway. The AMP-activated protein kinase alpha (AMPK-α) pathway regulates PEPCK, which itself is activated by the AMP/ATP ratio and liver kinase B1 (KB1). The Abelmoschus esculentus (L.) Moench (okra) plant contains a large amount of quercetin that can function as an agonist or an antagonist. The aim of this study was to examine the effects of quercetin flavonoid and A. esculentus extract on the level of AMPK-α expression and associated metabolic pathways. The findings demonstrate that metformin, quercetin, and okra extract may significantly raise AMPK-α levels while significantly lowering PEPCK and hormone-sensitive lipase (HSL) levels, in addition to improving glucose and lipid profiles. By stimulating KB1, these substances increased AMPK-α activation. Additionally, AMPK-α activation improved insulin resistance and Glucose transporter type 4 (GLUT4) gene expression levels. Since AMPK-α maintains energy balance and its activity has not been reported to be inhibited so far, it could be a potent therapeutic target. PRACTICAL APPLICATIONS: The development of effective AMPK-α agonists and antagonists holds promise for the treatment of metabolic disorders like diabetes. Dietary polyphenols are a valuable source for developing new drugs. However, due to the lack of understanding of the underlying mechanisms of their effect on cells, their use in the treatment of diabetes is controversial. In addition to chemicals that have medicinal benefits, chemists are searching for less harmful substances. Using plants containing bioactive chemicals for this purpose can be a good alternative to chemical drugs.


Assuntos
Abelmoschus , Diabetes Mellitus Experimental , Ratos , Animais , Glicemia/metabolismo , Abelmoschus/química , Abelmoschus/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Quercetina/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA