Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38831199

RESUMO

Breast cancer (BC) prevails as a major burden on global healthcare, being the most prevalent form of cancer among women. BC is a complex and heterogeneous disease, and current therapies, such as chemotherapy and radiotherapy, frequently fall short in providing effective solutions. These treatments fail to mitigate the risk of cancer recurrence and cause severe side effects that, in turn, compromise therapeutic responses in patients. Over the last decade, several strategies have been proposed to overcome these limitations. Among them, RNA-based technologies have demonstrated their potential across various clinical applications, notably in cancer therapy. However, RNA therapies are still limited by a series of critical issues like off-target effect and poor stability in circulation. Thus, novel approaches have been investigated to improve the targeting and bioavailability of RNA-based formulations to achieve an appropriate therapeutic outcome. Lipid nanoparticles (LNPs) have been largely proven to be an advantageous carrier for nucleic acids and RNA. This perspective explores the most recent advances on RNA-based technology with an emphasis on LNPs' utilization as effective nanocarriers in BC therapy and most recent progresses in their clinical applications.

2.
Adv Sci (Weinh) ; : e2403204, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874422

RESUMO

This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.

3.
Mater Today Bio ; 26: 101062, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706729

RESUMO

Current therapeutic approaches for skin cancer face significant challenges, including wound infection, delayed skin regeneration, and tumor recurrence. To overcome these challenges, an injectable adhesive near-infrared (NIR)-responsive hydrogel with time-dependent enhancement in viscosity is developed for combined melanoma therapy and antibacterial wound healing acceleration. The multifunctional hydrogel is prepared through the chemical crosslinking between poly(methyl vinyl ether-alt-maleic acid) and gelatin, followed by the incorporation of CuO nanosheets and allantoin. The synergistic inherent antibacterial potential of CuO nanosheets, the regenerative and smoothing effect of allantoin, the extracellular matrix-mimicking effect of gelatin, and the desirable swelling behavior of the hydrogel results in fast wound recovery after photothermal ablation of the tumor. Additionally, the hydrogel can serve as an alternative to sutures owing to its tissue adhesiveness ability, which can further render it the merits for accelerated repair of abdominal lesions while acting as a biocompatible barrier to prevent peritoneal adhesion.

4.
Chem Biol Interact ; 395: 111009, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38641145

RESUMO

The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.


Assuntos
Pneumopatias , Simbióticos , Humanos , Pneumopatias/tratamento farmacológico , Nanoestruturas/química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Animais , Nanopartículas/química
5.
Int J Biol Macromol ; 267(Pt 1): 131436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593897

RESUMO

Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.


Assuntos
Atorvastatina , Interações Hidrofóbicas e Hidrofílicas , Lactatos , Nanopartículas , Polietilenoglicóis , Atorvastatina/química , Polietilenoglicóis/química , Nanopartículas/química , Portadores de Fármacos/química , Micelas , Poliésteres/química , Composição de Medicamentos , Simulação de Dinâmica Molecular
6.
Artigo em Inglês | MEDLINE | ID: mdl-38546538

RESUMO

Biomaterial-mediated bone tissue engineering (BTE) offers an alternative, interesting approach for the restoration of damaged bone tissues in postsurgery osteosarcoma treatment. This study focused on synthesizing innovative composite inks, integrating self-assembled silk fibroin (SF), tannic acids (TA), and electrospun bioactive glass nanofibers 70SiO2-25CaO-5P2O5 (BGNF). By synergistically combining the unique characteristics of these three components through self-assembly and microextrusion-based three-dimensional (3D) printing, our goal was to produce durable and versatile aerogel-based 3D composite scaffolds. These scaffolds were designed to exhibit hierarchical porosity along with antibacterial, antiosteosarcoma, and bone regeneration properties. Taking inspiration from mussel foot protein attachment chemistry involving the coordination of dihydroxyphenylalanine (DOPA) amino acids with ferric ions (Fe3+), we synthesized a tris-complex catecholate-iron self-assembled composite gel. This gel formation occurred through the coordination of oxidized SF (SFO) with TA and polydopamine-modified BGNF (BGNF-PDA). The dynamic nature of the coordination ligand-metal bonds within the self-assembled SFO matrix provided excellent shear-thinning properties, allowing the SFO-TA-BGNF complex gel to be extruded through a nozzle, facilitating 3D printing into scaffolds with outstanding shape fidelity. Moreover, the developed composite aerogels exhibited multifaceted features, including NIR-triggered photothermal antibacterial and in vitro photothermal antiosteosarcoma properties. In vitro studies showcased their excellent biocompatibility and osteogenic features as seeded cells successfully differentiated into osteoblasts, promoting bone regeneration in 21 days. Through comprehensive characterizations and biological validations, our antibacterial scaffold demonstrated promise as an exceptional platform for concurrent bone regeneration and bone cancer therapy, setting the stage for their potential clinical application.

7.
Biomaterials ; 307: 122530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493672

RESUMO

The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Lipossomos , Nanopartículas , Camundongos , Animais , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas/uso terapêutico , Administração Oral , Fenômenos Magnéticos , Microambiente Tumoral
8.
BMC Biotechnol ; 24(1): 10, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439037

RESUMO

Polymicrobial communities lead to worsen the wound infections, due to mixed biofilms, increased antibiotic resistance, and altered virulence production. Promising approaches, including enzymes, may overcome the complicated condition of polymicrobial infections. Therefore, this study aimed to investigate Staphopain A-mediated virulence and resistance alteration in an animal model of Staphylococcus aureus and Pseudomonas aeruginosa co-infection. S. aureus and P. aeruginosa were co-cultured on the L-929 cell line and wound infection in an animal model. Then, recombinant staphopain A was purified and used to treat mono- and co-infections. Following the treatment, changes in virulence factors and resistance were investigated through phenotypic methods and RT-PCR. Staphopain A resulted in a notable reduction in the viability of S. aureus and P. aeruginosa. The biofilm formed in the wound infection in both animal model and cell culture was disrupted remarkably. Moreover, the biofilm-encoding genes, quorum sensing regulating genes, and virulence factors (hemolysin and pyocyanin) controlled by QS were down-regulated in both microorganisms. Furthermore, the resistance to vancomycin and doripenem decreased following treatment with staphopain A. According to this study, staphopain A might promote wound healing and cure co-infection. It seems to be a promising agent to combine with antibiotics to overcome hard-to-cure infections.


Assuntos
Coinfecção , Infecção dos Ferimentos , Animais , Virulência , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética , Coinfecção/tratamento farmacológico , Fatores de Virulência/genética , Modelos Animais , Resistência Microbiana a Medicamentos , Infecção dos Ferimentos/tratamento farmacológico
9.
ACS Biomater Sci Eng ; 10(3): 1207-1234, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38416058

RESUMO

Biomaterials possess distinctive properties, notably their ability to encapsulate active biological products while providing biocompatible support. The immune system plays a vital role in preventing cancer recurrence, and there is considerable demand for an effective strategy to prevent cancer recurrence, necessitating effective strategies to address this concern. This review elucidates crucial cellular signaling pathways in cancer recurrence. Furthermore, it underscores the potential of biomaterial-based tools in averting or inhibiting cancer recurrence by modulating the immune system. Diverse biomaterials, including hydrogels, particles, films, microneedles, etc., exhibit promising capabilities in mitigating cancer recurrence. These materials are compelling candidates for cancer immunotherapy, offering in situ immunostimulatory activity through transdermal, implantable, and injectable devices. They function by reshaping the tumor microenvironment and impeding tumor growth by reducing immunosuppression. Biomaterials facilitate alterations in biodistribution, release kinetics, and colocalization of immunostimulatory agents, enhancing the safety and efficacy of therapy. Additionally, how the method addresses the limitations of other therapeutic approaches is discussed.


Assuntos
Materiais Biocompatíveis , Neoplasias , Humanos , Materiais Biocompatíveis/uso terapêutico , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
10.
ACS Nano ; 18(4): 3651-3668, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241481

RESUMO

Oral administration is the most preferred approach for treating colon diseases, and in situ vaccination has emerged as a promising cancer therapeutic strategy. However, the lack of effective drug delivery platforms hampered the application of in situ vaccination strategy in oral treatment of colorectal cancer (CRC). Here, we construct an oral core-shell nanomedicine by preparing a silk fibroin-based dual sonosensitizer (chlorin e6, Ce6)- and immunoadjuvant (imiquimod, R837)-loaded nanoparticle as the core, with its surface coated with plant-extracted lipids and pluronic F127 (p127). The resultant nanomedicines (Ce6/R837@Lp127NPs) maintain stability during their passage through the gastrointestinal tract and exert improved locomotor activities under ultrasound irradiation, achieving efficient colonic mucus infiltration and specific tumor penetration. Thereafter, Ce6/R837@Lp127NPs induce immunogenic death of colorectal tumor cells by sonodynamic treatment, and the generated neoantigens in the presence of R837 serve as a potent in situ vaccine. By integrating with immune checkpoint blockades, the combined treatment modality inhibits orthotopic tumors, eradicates distant tumors, and modulates intestinal microbiota. As the first oral in situ vaccination, this work spotlights a robust oral nanoplatform for producing a personalized vaccine against CRC.


Assuntos
Neoplasias Colorretais , Nanopartículas , Vacinas , Humanos , Imiquimode , Linhagem Celular Tumoral , Nanomedicina , Neoplasias Colorretais/tratamento farmacológico , Vacinação , Imunoterapia
11.
Biomaterials ; 302: 122332, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801790

RESUMO

The treatment efficacies of conventional medications against colorectal cancer (CRC) are restricted by a low penetrative, hypoxic, and immunosuppressive tumor microenvironment. To address these restrictions, we developed an innovative antitumor platform that employs calcium overload-phototherapy using mitochondrial N770-conjugated mesoporous silica nanoparticles loaded with CaO2 (CaO2-N770@MSNs). A loading level of 14.0 wt% for CaO2-N770@MSNs was measured, constituting an adequate therapeutic dosage. With the combination of oxygen generated from CaO2 and hyperthermia under near-infrared irradiation, CaO2-N770@MSNs penetrated through the dense mucus, accumulated in the colorectal tumor tissues, and inhibited tumor cell growth through endoplasmic reticulum stress and mitochondrial damage. The combination of calcium overload and phototherapy revealed high therapeutic efficacy against orthotopic colorectal tumors, alleviated the immunosuppressive microenvironment, elevated the abundance of beneficial microorganisms (e.g., Lactobacillaceae and Lachnospiraceae), and decreased harmful microorganisms (e.g., Bacteroidaceae and Muribaculaceae). Moreover, together with immune checkpoint blocker (αPD-L1), these nanoparticles showed an ability to eradicate both orthotopic and distant tumors, while potentiating systemic antitumor immunity. This treatment platform (CaO2-N770@MSNs plus αPD-L1) open a new horizon of synergistic treatment against hypoxic CRC with high killing power and safety.


Assuntos
Neoplasias Colorretais , Hipertermia Induzida , Nanopartículas , Humanos , Cálcio , Linhagem Celular Tumoral , Fototerapia , Neoplasias Colorretais/terapia , Imunoterapia , Hipóxia , Microambiente Tumoral
12.
Adv Drug Deliv Rev ; 200: 115050, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549847

RESUMO

Novel transplantation techniques are currently under development to preserve the function of impaired tissues or organs. While current technologies can enhance the survival of recipients, they have remained elusive to date due to graft rejection by undesired in vivo immune responses despite systemic prescription of immunosuppressants. The need for life-long immunomodulation and serious adverse effects of current medicines, the development of novel biomaterial-based immunoengineering strategies has attracted much attention lately. Immunomodulatory 3D platforms can alter immune responses locally and/or prevent transplant rejection through the protection of the graft from the attack of immune system. These new approaches aim to overcome the complexity of the long-term administration of systemic immunosuppressants, including the risks of infection, cancer incidence, and systemic toxicity. In addition, they can decrease the effective dose of the delivered drugs via direct delivery at the transplantation site. In this review, we comprehensively address the immune rejection mechanisms, followed by recent developments in biomaterial-based immunoengineering strategies to prolong transplant survival. We also compare the efficacy and safety of these new platforms with conventional agents. Finally, challenges and barriers for the clinical translation of the biomaterial-based immunoengineering transplants and prospects are discussed.


Assuntos
Materiais Biocompatíveis , Rejeição de Enxerto , Humanos , Rejeição de Enxerto/prevenção & controle , Imunossupressores/uso terapêutico , Imunomodulação , Sobrevivência de Enxerto
13.
Mater Today Bio ; 20: 100672, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273793

RESUMO

Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.

14.
Molecules ; 28(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175267

RESUMO

Cadmium sulfide nanoparticles (CdS NPs) have been employed in various fields of nanobiotechnology due to their proven biomedical properties. They are unique in their properties due to their size and shape, and they are popular in the area of biosensors, bioimaging, and antibacterial and anticancer applications. Most CdS NPs are generally synthesized through chemical, physical, or biological methods. Among these methods, biogenic synthesis has attracted more attention due to its high efficiency, environmental friendliness, and biocompatibility features. The green approach was found to be superior to other methods in terms of maintaining the structural characteristics needed for optimal biomedical applications. The size and coating components of CdS NPs play a crucial role in their biomedical activities, such as anticancer, antibacterial, bioimaging, and biosensing applications. CdS NPs have gained significant interest in bioimaging due to their desirable properties, including good dispersion, cell integrity preservation, and efficient light scattering. Despite these, further studies are necessary, particularly in vivo studies to reduce NPs' toxicity. This review discusses the different methods of synthesis, how CdS NPs are characterized, and their applications in the biomedical field.


Assuntos
Compostos de Cádmio , Nanopartículas , Nanopartículas/química , Compostos de Cádmio/química , Sulfetos/química , Antibacterianos/química
15.
Polymers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904404

RESUMO

Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.

16.
Mater Today Bio ; 19: 100609, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36969694

RESUMO

Intravenously administered nanocarriers suffer from off-target distribution, pre-targeting drug leakage, and rapid clearance, limiting their efficiency in tumor eradication. To bypass these challenges, an injectable hydrogel with time- and temperature-dependent viscosity enhancement behavior and self-healing property are reported to assist in the retention of the hydrogel in the tumor site after injection. The cancer cell membrane (CCM) and sorafenib are embedded into the hydrogel to elicit local tumor-specific immune responses and induce cancer cell apoptosis, respectively. In addition, hyaluronic acid (HA) coated Bi2S3 nanorods (BiH) are incorporated within the hydrogel to afford prolonged multi-cycle local photothermal therapy (PTT) due to the reduced diffusion of the nanorods to the surrounding tissues as a result of HA affinity toward cancer cells. The results show the promotion of immunostimulatory responses by both CCM and PTT through the release of inflammatory cytokines from immune cells, which allows localized and complete ablation of the breast tumor in an animal model by a single injection of the hydrogel. Moreover, the BiH renders strong antibacterial activity to the hydrogel, which is crucial for the clinical translation of injectable hydrogels as it minimizes the risk of infection in the post-cancer lesion formed by PTT-mediated cancer therapy.

17.
Adv Mater ; 35(19): e2212300, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811203

RESUMO

Diabetic wound (DW) therapy is currently a big challenge in medicine and strategies to enhance neurogenesis and angiogenesis have appeared to be a promising direction. However, the current treatments have failed to coordinate neurogenesis and angiogenesis simultaneously, leading to an increased disability rate caused by DWs. Herein, a whole-course-repair system is introduced by a hydrogel to concurrently achieve a mutually supportive cycle of neurogenesis-angiogenesis under a favorable immune-microenvironment. This hydrogel can first be one-step packaged in a syringe for later in situ local injections to cover wounds long-termly for accelerated wound healing via the synergistic effect of magnesium ions (Mg2+ ) and engineered small extracellular vesicles (sEVs). The self-healing and bio-adhesive properties of the hydrogel make it an ideal physical barrier for DWs. At the inflammation stage, the formulation can recruit bone marrow-derived mesenchymal stem cells to the wound sites and stimulate them toward neurogenic differentiation, while providing a favorable immune microenvironment via macrophage reprogramming. At the proliferation stage of wound repair, robust angiogenesis occurs by the synergistic effect of the newly differentiated neural cells and the released Mg2+ , allowing a regenerative neurogenesis-angiogenesis cycle to take place at the wound site. This whole-course-repair system provides a novel platform for combined DW therapy.


Assuntos
Diabetes Mellitus , Cicatrização , Humanos , Hidrogéis/farmacologia , Macrófagos , Neurogênese
18.
Biomater Sci ; 11(7): 2486-2503, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779258

RESUMO

Photothermal therapy (PTT) is a promising approach for treating cancer. However, it suffers from the formation of local lesions and subsequent bacterial infection in the damaged area. To overcome these challenges, the strategy of mild PTT following the high-temperature ablation of tumors is studied to achieve combined tumor suppression, wound healing, and bacterial eradication using a hydrogel. Herein, Bi2S3 nanorods (NRs) are employed as a photothermal agent and coated with hyaluronic acid to obtain BiH NRs with high colloidal stability. These NRs and allantoin are loaded into an injectable Fe3+-coordinated hydrogel composed of sodium alginate (Alg) and Farsi gum (FG), which is extracted from Amygdalus scoparia Spach. The hydrogel can be used for localized cancer therapy by high-temperature PTT, followed by wound repair through the combination of mild hyperthermia and allantoin-mediated induction of cell proliferation. In addition, an outstanding blood clotting effect is observed due to the water-absorbing ability and negative charge of FG and Alg as well as the porous structure of hydrogels. The hydrogels also eradicate infection owing to the local heat generation and intrinsic antimicrobial activity of the NRs. Lastly, in vivo studies reveal an efficient photothermal-based tumor eradication and accelerated wound healing by the hydrogel.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Hidrogéis/química , Alantoína , Calefação , Cicatrização , Neoplasias/tratamento farmacológico , Metais , Antibacterianos/farmacologia , Antibacterianos/química
19.
J Control Release ; 354: 128-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599396

RESUMO

Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.


Assuntos
Glicopeptídeos , Nanoestruturas , Glicopeptídeos/química , Peptídeos , Polímeros/química , Sistemas de Liberação de Medicamentos
20.
Bioact Mater ; 23: 471-507, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36514388

RESUMO

Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA