Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1222698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720803

RESUMO

Background: Triple-negative breast cancer (TNBC) is a sub-classification of breast carcinomas, which leads to poor survival outcomes for patients. TNBCs do not possess the hormone receptors that are frequently targeted as a therapeutic in other cancer subtypes and, therefore, chemotherapy remains the standard treatment for TNBC. Nuclear envelope proteins are frequently dysregulated in cancer cells, supporting their potential as novel cancer therapy targets. The Lem-domain (Lem-D) (LAP2, Emerin, MAN1 domain, and Lem-D) proteins are a family of inner nuclear membrane proteins, which share a ~45-residue Lem-D. The Lem-D proteins, including Ankle2, Lemd2, TMPO, and Emerin, have been shown to be associated with many of the hallmarks of cancer. This study aimed to define the association between the Lem-D proteins and TNBC and determine whether these proteins could be promising therapeutic targets. Methods: GENT2, TCGA, and KM plotter were utilized to investigate the expression and prognostic implications of several Lem-D proteins: Ankle2, TMPO, Emerin, and Lemd2 in publicly available breast cancer patient data. Immunoblotting and immunofluorescent analysis of immortalized non-cancerous breast cells and a panel of TNBC cells were utilized to establish whether protein expression of the Lem-D proteins was significantly altered in TNBC. SiRNA was used to decrease individual Lem-D protein expression, and functional assays, including proliferation assays and apoptosis assays, were conducted. Results: The Lem-D proteins were generally overexpressed in TNBC patient samples at the mRNA level and showed variable expression at the protein level in TNBC cell lysates. Similarly, protein levels were generally negatively correlated with patient survival outcomes. siRNA-mediated depletion of the individual Lem-D proteins in TNBC cells induced aberrant nuclear morphology, decreased proliferation, and induced cell death. However, minimal effects on nuclear morphology or cell viability were observed following Lem-D depletion in non-cancerous MCF10A cells. Conclusion: There is evidence to suggest that Ankle2, TMPO, Emerin, and Lemd2 expressions are correlated with breast cancer patient outcomes, but larger patient sample numbers are required to confirm this. siRNA-mediated depletion of these proteins was shown to specifically impair TNBC cell growth, suggesting that the Lem-D proteins may be a specific anti-cancer target.

2.
Trends Mol Med ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772764

RESUMO

Breast cancer (BCa) is a prevalent malignancy that predominantly affects women around the world. Somatic copy number alterations (CNAs) are tumor-specific amplifications or deletions of DNA segments that often drive BCa development and therapy resistance. Hence, the complex patterns of CNAs complement BCa classification systems. In addition, understanding the precise contributions of CNAs is essential for tailoring personalized treatment approaches. This review highlights how tumor evolution drives the acquisition of CNAs, which in turn shape the genomic landscapes of BCas. It also discusses advanced methodologies for identifying recurrent CNAs, studying CNAs in BCa and their clinical impact.

3.
Cancers (Basel) ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932846

RESUMO

Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.

4.
EMBO Mol Med ; 10(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30361264

RESUMO

Osteosarcoma (OS) is a rare tumor of the bone occurring mainly in young adults accounting for 5% of all childhood cancers. Because of the limited therapeutic options, there has been no survival improvement for OS patients in the past 40 years. The epidermal growth factor receptor (EGFR) is highly expressed in OS; however, its clinical relevance is unclear. Here, we employed an autochthonous c-Fos-dependent OS mouse model (H2-c-fosLTR) and human OS tumor biopsies for preclinical studies aimed at identifying novel biomarkers and therapeutic benefits of anti-EGFR therapies. We show that EGFR deletion/inhibition results in reduced tumor formation in H2-c-fosLTR mice by directly inhibiting the proliferation of cancer-initiating osteoblastic cells by a mechanism involving RSK2/CREB-dependent c-Fos expression. Furthermore, OS patients with co-expression of EGFR and c-Fos exhibit reduced overall survival. Preclinical studies using human OS xenografts revealed that only tumors expressing both EGFR and c-Fos responded to anti-EGFR therapy demonstrating that c-Fos can be considered as a novel biomarker predicting response to anti-EGFR treatment in OS patients.


Assuntos
Neoplasias Ósseas/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Receptores ErbB/genética , Deleção de Genes , Humanos , Ligantes , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-fos/genética , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA