Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e25046, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312640

RESUMO

Phalsa is a tropical and subtropical fruit that is high in nutritional value and is primarily cultivated for its fruit. As, Phalsa fruit contain high number of vitamins (A and C), minerals (calcium, phosphorus, and iron), and fibre while being low in calories and fat. The fruit and seed of Phalsa contain 18 amino acids, the majority of which are aspartic acid, glutamic acid, and leucine. Based on in vivo and in vitro studies phalsa plant possess high antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic properties. However, antioxidant properties are found in the form of vitamin C, total phenolic, anthocyanin, flavonoid, and tannin. The phalsa plant's fruits and leaves have substantial anticancer action against cancer cell lines. Because of the presence of a broad range of physiologically active chemicals, investigations on phalsa plants revealed that some plant parts have radioprotective qualities. The anti-glycosidase and anti-amylase activity of aqueous fresh fruit extract was shown to be substantial. The phalsa plant contains an abundance of biologically active chemicals, allowing it to control microorganisms through a variety of processes. Phalsa methanolic leaf extract was revealed to have antimalarial and antiemetic effects. The hot and cold polysaccharide fractions extracted from the phalsa plant have potent hepatoprotective and therapeutic properties. Therefore, this review is based on the nutritional, bioactive, phytochemicals, and potential pharmacological uses of phalsa. The potential health benefits and economic potential of the phalsa berry's phytochemicals are promising areas for further study.

2.
Molecules ; 28(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687076

RESUMO

Sappan wood (Caesalpinia sappan) is a tropical hardwood tree found in Southeast Asia. Sappan wood contains a water-soluble compound, which imparts a red color named brazilin. Sappan wood is utilized to produce dye for fabric and coloring agents for food and beverages, such as wine and meat. As a valuable medicinal plant, the tree is also known for its antioxidant, anti-inflammatory, and anticancer properties. It has been observed that sappan wood contains various bioactive compounds, including brazilin, brazilein, sappan chalcone, and protosappanin A. It has also been discovered that these substances have various health advantages; they lower inflammation, enhance blood circulation, and are anti-oxidative in nature. Sappan wood has been used as a medicine to address a range of illnesses, such as gastrointestinal problems, respiratory infections, and skin conditions. Studies have also suggested that sappan wood may have anticarcinogenic potential as it possesses cytotoxic activity against cancer cells. Based on this, the present review emphasized the different medicinal properties, the role of phytochemicals, their health benefits, and several food and nonfood applications of sappan wood. Overall, sappan wood has demonstrated promising medicinal properties and is an important resource in traditional medicine. The present review has explored the potential role of sappan wood as an essential source of bioactive compounds for drug development.


Assuntos
Caesalpinia , Chalcona , Antioxidantes/farmacologia , Bebidas , Corantes , Carne
3.
Front Pharmacol ; 13: 905755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847041

RESUMO

Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin's biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.

4.
J Biomed Nanotechnol ; 18(4): 1106-1120, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35854447

RESUMO

Transition metal oxide NPs have delivered wide applications in various fields. Therefore, in this study, a novel fungus, Alternaria sp. (NCBI Accession No: MT982648) was isolated and characterized from the vicinity of medicinal plants. Eventually, in this method extracted proteins from isolated fungus were utilized to synthesize highly biocompatible zinc nanoparticles (ZnO NPs). The various physical techniques including UV-visible spectroscopy, TEM, HR-TEM, XRD, DLS, zeta potential, and FTIR were used to characterize particles. The UV-visible absorption (λMax) and binding energy for the as-synthesized particles were found to be 329 nm and 3.91 eV, respectively. Further, the polydispersed particles were revealed to have regular crystallinity with hexagonal wurtzite phase of ZnO with the spacing of ~2.46 Å under XRD and HR-TEM. The average size of a particle under TEM was found to be ~18 nm. The evaluation of various surface functional groups of particles was done by FTIR. The average hydrodynamic diameter of particles was found to be ~57 d. nm with 0.44 particle distribution index whereas the nanoemulsion stability was explained by Zeta potential (-9.47 mV). These particles were found to exhibit potential antibacterial and anticancer activities. They were found to be bactericidal against S. abony (MIC 5.73 µg/mL); B. pumilis (MIC 6.64 µg/mL); K. pneumonia (MIC 14.4 µg/mL); E. coli (MIC 8.7 µg/mL); B. subtilis (MIC 5.63 µg/mL) and S. aureus (MIC 12.04 µg/mL). Further, they are also found to be concentration-dependent anticancer and inhibited the growth of A549 cells (IC50-65.3 µg/mL) whereas they were found to demonstrate no any cytotoxicity against NRK normal kidney cell line. The internalization of particles into the nucleus (i.e., nuclear fragmentation and DNA damage) was confirmed by DAPI staining. The intracellular particles were found to generate excessive ROS. Further, the anticancer potential was also estimated by noticing a hike in oxidative stress parameters, cell viability, cell morphology, and change in mitochondrial membrane potential. We effectively synthesized potentially potent antibacterial and anticancer novel bioengineered ZnO NPs.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Zinco/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
5.
Front Nutr ; 9: 902554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677543

RESUMO

Fruit seeds include a large number of bioactive substances with potential applications in the culinary and pharmaceutical industries, satisfying current demands for natural ingredients, which are generally preferred since they have fewer adverse effects than artificial components. Researchers have long been interested in the functional features, as well as the proximate and mineral compositions, of diverse fruit seeds such as tomato, apple, guava, and dates, among others. Bioactive components such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (-tocopherol) are abundant in fruit by-products and have significant health benefits, making them a viable alternative for the formulation of a wide range of food products with significant functional and nutraceutical potential. This article discusses the role and activities of bioactive chemicals found in tomato, apple, dates, and guava seeds, which can be used in a variety of food forms to cure a variety of cardiovascular and neurological disorders, as well as act as an antioxidant, anticancer, and antibacterial agent. The extraction of diverse bioactive components from by-products could pave the path for the creation of value-added products from the fruit industry, making it more commercially viable while also reducing environmental pollution caused by by-products from the fruit industry.

6.
Plants (Basel) ; 11(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567130

RESUMO

The influence of medicinal plants on humanity spans time immemorial. These plants are also used at present with local and tribal peoples for the cures of various illnesses. Nature has produced an immense number of medicinal plants, which directly or indirectly help to treat various ailments and have numerous applications in the fields of pharmaceuticals, agriculture, food flavors and preservatives, aromas, and cosmetics. Bergenia pacumbis (Buch.-Ham. ex D.Don) C.Y.Wu & J.T.Pan (synonym: Bergenia ligulate Engl.), is an important medicinal plant belonging to the Saxifragaceae family, and not to be confused with Bergenia ciliata (Haw.) Sternb., and is popularly known as Pashanbheda (meaning to dissolve the kidney stone). This plant is a rich source of secondary metabolites (SMs) such as coumarins, flavonoids, benzenoids, lactones, tannins, phenols, and sterols, which make this plant a highly valued medicinal herb with a broad spectrum of pharmacological activities such as anti-urolithic, antioxidant, anti-viral, free radical scavenging, antidiabetic, anti-hepatotoxic, diuretic, antipyretic, anti-oxaluria, anti-tumour, antibacterial, antifungal, anti-inflammatory, antimicrobial, and cardioprotective. This review summarizes traditional uses and offers up to date data for future research on B. pacumbis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA