RESUMO
Alzheimer's disease is a significant global health issue, and studies suggest that neuroinflammation plays a vital role in the advancement of this disease. In this study, anakinra has been shown to display a time- and concentration-dependent antineuroinflammatory effect. In the in vitro studies, it diminished the gene expressions of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO) synthase 2 stimulated by lipopolysaccharide (LPS). Anakinra also reduced the LPS-induced production of NO and reactive oxygen species. Thus, the hypertrophic state of LPS-activated BV2 microglial cells was reversed by anakinra. Furthermore, acrylamide (ACR)-induced activation of nuclear transcription factor-κB, TNF-α, and interleukin-1ß was downregulated, while cAMP response element binding protein and brain-derived neurotrophic factor expression levels were markedly enhanced in ACR-treated zebrafish larvae. It was also observed that anakinra improved the uncoordinated swimming behaviors in ACR-exposed zebrafish larvae. Overall, anakinra demonstrated potential antineuroinflammatory and antioxidative effects.
Assuntos
Doença de Alzheimer , Reposicionamento de Medicamentos , Proteína Antagonista do Receptor de Interleucina 1 , Lipopolissacarídeos , Microglia , Doenças Neuroinflamatórias , Peixe-Zebra , Animais , Lipopolissacarídeos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Anti-Inflamatórios/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismoRESUMO
INTRODUCTION: Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide, and brings a huge burden on the quality of life of patients with TBI and the country's healthcare system. Peripheral organs, especially the kidney, and liver, may be affected by the onset of molecular responses following brain tissue damage. While secondary injury responses post TBI has been well studied in the brain, the effect/consequences of these responses in the peripheral organs have not yet been fully elucidated. Thus, our study aimed to investigate the immunoreactivity of these responses, particularly via proinflammatory cytokines and autophagy markers in the kidney and liver post-acute and chronic TBI. MATERIAL AND METHODS: Mild TBI (mTBI) and repetitive mTBI (r-mTBI) were induced in male and female 2-month-old Balb/c mice via the Marmarou weight-drop model. Liver and kidney tissues were sampled at 24 hours (acute) and 30 days (chronic) post TBI and subjected to histopathological and immunoreactivity analysis. RESULTS: Interleukin (IL)-6 levels were significantly increased in the male liver and kidney tissues in both TBI groups compared to the control group but were seen to be decreased in the female r-mTBI chronic liver and r-mTBI acute kidney. Tumor necrosis factor a (TNF-a) levels were found to increase only in the female r-mTBI chronic kidney tissue and mTBI chronic liver tissue. IL-1b levels were increased in the male and female r-mTBI liver tissues but decreased in the female mTBI kidney tissue. Inducible nitric oxide synthase (iNOS) levels were found to be significantly increased in the female mTBI acute and r-mTBI chronic kidney tissue and mTBI liver tissue, but decreased in the r-mTBI acute kidney and r-mTBI liver tissues. Beclin-1 levels were increased in male mTBI chronic and r-mTBI acute liver tissue but decreased in the r-mTBI chronic group. LC3A/B and P62/SQSTM1 levels were significantly increased in the female mTBI chronic and male r-mTBI chronic liver tissues but decreased in the male r-mTBI and female r-mTBI acute kidney tissues. Significant histopathological changes were also observed in the liver and kidney tissue which were dependent on the TBI severity, gender, and time post TBI. CONCLUSIONS: The results showed that TBI may elicit peripheral molecular responses, particularly in terms of alteration in the levels of inflammatory cytokines and autophagy markers, which were gender- and time-dependent. This suggests that TBI may have a significant role in the cellular damage of the kidney and liver in both the acute and chronic phases post TBI, thus ensuring that the effects of TBI may not be confined to the brain.
RESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-ß (Aß) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aß plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aß plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aß accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
RESUMO
Pathogenic Naegleria fowleri (N. fowleri) are opportunistic free-living amoebae and are the causative agents of a very rare but severe brain infection called primary amoebic meningoencephalitis (PAM). The fatality rate of PAM in reported cases is more than 95%. Most of the drugs used againstN. fowleri infections are repurposed drugs. Therefore, a large number of compounds have been tested againstN. fowleri in vitro, but most of the tested compounds showed high toxicity and an inability to cross the blood-brain barrier. Andrographolide, forskolin, and borneol are important natural compounds that have shown various valuable biological properties. In the present study, the nanoconjugates (AND-AgNPs, BOR-AgNPs, and FOR-AgNPs) of these compounds were synthesized and assessed against both stages (trophozoite and cyst) ofN. fowleri for their antiamoebic and cysticidal potential in vitro. In addition, cytotoxicity and host cell pathogenicity were also evaluated in vitro. FOR-AgNPs were the most potent nanoconjugate and showed potent antiamoebic activity againstN. fowleriwith an IC50 of 26.35 µM. Nanoconjugates FOR-AgNPs, BOR-AgNPs, and AND-AgNPs also significantly inhibit the viability of N. fowleri cysts. Cytotoxicity assessment showed that these nanoconjugates caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reducing the cytopathogenicity of N. fowleri trophozoites to the HaCaT cells. The outcomes of our experiments have unveiled substantial potential for AND-AgNPs, BOR-AgNPs, and FOR-AgNPs in the realm of developing innovative alternative therapeutic agents to combat infections caused by N. fowleri. This study represents a significant step forward in the pursuit of advanced strategies for managing such amoebic infections, laying the foundation for the development of novel and more effective therapeutic modalities in the fight against free-living amoebae.
RESUMO
Naegleria fowleri is one of the free-living amoebae and is a causative agent of a lethal and rare central nervous system infection called primary amoebic meningoencephalitis. Despite the advancement in antimicrobial chemotherapy, the fatality rate in the reported cases is more than 95%. Most of the treatment drugs used against N. fowleri infection are repurposed drugs. Therefore, a large number of compounds have been tested against N. fowleri in vitro, but most of the compounds showed high toxicity. To overcome this, we evaluated the effectiveness of naturally occurring terpene compounds against N. fowleri. In this study, we evaluated the antiamoebic potential of natural compounds including Thymol, Borneol, Andrographolide, and Forskolin againstN. fowleri. Thymol showed the highest amoebicidal activity with IC50/24 h at 153.601 ± 19.6 µM. Two combinations of compounds Forskolin + Thymol and Forskolin + Borneol showed a higher effect on the viability of trophozoites as compared to compounds alone and hence showed a synergistic effect. The IC50 reported for Forskolin + Thymol was 81.30 ± 6.86 µM. Borneol showed maximum cysticidal activity with IC50/24 h at 192.605 ± 3.01 µM. Importantly, lactate dehydrogenase release testing revealed that all compounds displayed minimal cytotoxicity to human HaCaT, HeLa, and SH-SY5Y cell lines. The cytopathogenicity assay showed that Thymol and Borneol also significantly reduced the host cell cytotoxicity of pretreated amoeba toward the human HaCaT cell line. So, these terpene compounds hold potential as therapeutic agents against infections caused by N. fowleri and are potentially a step forward in drug development against this deadly pathogen as these compounds have also been reported to cross the blood-brain barrier. Therefore, an in vivo study using animal models is necessary to assess the efficacy of these compounds and the need for further research into the intranasal route of delivery for the treatment of these life-threatening infections.
Assuntos
Amoeba , Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Neuroblastoma , Animais , Humanos , Terpenos/farmacologia , Terpenos/uso terapêutico , Timol/farmacologia , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Colforsina/farmacologia , Células HeLaRESUMO
Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of psychiatric disturbances, cognitive and motor dysfunction. The daily performances and life quality of HD patients have been severely interfered by these clinical signs and symptoms until the last stage of neuronal cell death. To the best of our knowledge, no treatment is available to completely mitigate the progression of HD. Mangiferin, a naturally occurring potent glucoxilxanthone, is mainly isolated from the Mangifera indica plant. Considerable studies have confirmed the medicinal benefits of mangiferin against memory and cognitive impairment in neurodegenerative experimental models such as Alzheimer's and Parkinson's diseases. Therefore, this study aims to evaluate the neuroprotective effect of mangiferin against 3-nitropropionic acid (3-NP) induced HD in rat models. Adult Wistar rats (n = 32) were randomly allocated equally into four groups of eight rats each: normal control (Group I), disease control (Group II) and two treatment groups (Group III and Group IV). Treatment with mangiferin (10 and 20 mg/kg, p. o.) was given for 14 days, whereas 3-NP (15 mg/kg, i. p.) was given for 7 days to induce HD-like symptoms in rats. Rats were assessed for cognitive functions and motor coordination using open field test (OFT), novel object recognition (NOR) test, neurological assessment, rotarod and grip strength tests. Biochemical parameters such as oxidative stress markers and pro-inflammatory markers in brain hippocampus, striatum and cortex regions were evaluated. Histopathological study on brain tissue was also conducted using hematoxylin and eosin (H&E) staining. 3-NP triggered anxiety, decreased recognition memory, reduced locomotor activity, lower neurological scoring, declined rotarod performance and grip strength were alleviated by mangiferin treatment. Further, a significant depletion in brain malondialdehyde (MDA) level, an increase in reduced glutathione (GSH) level, succinate dehydrogenase (SDH), superoxide dismutase (SOD) and catalase (CAT) activities, and a decrease in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) levels were observed in mangiferin treated groups. Mangiferin also mitigated 3-NP induced histopathological alteration in the brain hippocampus, striatum and cortex sections. It could be inferred that mangiferin protects the brain against oxidative damage and neuroinflammation, notably via antioxidant and anti-inflammatory activities. Mangiferin, which has a good safety profile, may be an alternate treatment option for treating HD and other neurodegenerative disorders. The results of the current research of mangiferin will open up new avenues for the development of safe and effective therapeutic agents in diminishing HD.
RESUMO
This study was designed to seek the phytochemical analysis, antioxidant, enzyme inhibition, and toxicity potentials of methanol and dichloromethane (DCM) extracts of aerial and root parts of Crotalaria burhia. Total bioactive content, high-performance liquid chromatography-photodiode array detector (HPLC-PDA) polyphenolic quantification, and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis were utilized to evaluate the phytochemical composition. Antioxidant [including 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)], 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), cupric reducing antioxidant capacity CUPRAC, phosphomolybdenum, and metal chelation assays] and enzyme inhibition [against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, α-amylase, and tyrosinase] assays were carried out for biological evaluation. The cytotoxicity was tested against MCF-7 and MDA-MB-231 breast cell lines. The root-methanol extract contained the highest levels of phenolics (37.69 mg gallic acid equivalent/g extract) and flavonoids (83.0 mg quercetin equivalent/g extract) contents, and was also the most active for DPPH (50.04 mg Trolox equivalent/g extract) and CUPRAC (139.96 mg Trolox equivalent /g extract) antioxidant assays. Likewise, the aerial-methanol extract exhibited maximum activity for ABTS (94.05 mg Trolox equivalent/g extract) and FRAP (64.23 mg Trolox equivalent/g extract) assays. The aerial-DCM extract was noted to be a convincing cholinesterase (AChE; 4.01 and BChE; 4.28 mg galantamine equivalent/g extract), and α-glucosidase inhibitor (1.92 mmol acarbose equivalent/g extract). All of the extracts exhibited weak to modest toxicity against the tested cell lines. A considerable quantities of gallic acid, catechin, 4-OH benzoic acid, syringic acid, vanillic acid, 3-OH-4-MeO benzaldehyde, epicatechin, p-coumaric acid, rutin, naringenin, and carvacrol were quantified via HPLC-PDA analysis. UHPLC-MS analysis of methanolic extracts from roots and aerial parts revealed the tentative identification of important phytoconstituents such as polyphenols, saponins, flavonoids, and glycoside derivatives. To conclude, this plant could be considered a promising source of origin for bioactive compounds with several therapeutic uses.
RESUMO
Epilepsy represents a challenge in the management of patients with brain tumors. Epileptic seizures are one of the most frequent comorbidities in neuro-oncology and may be the debut symptom of a brain tumor or a complication during its evolution. Epileptogenic mechanisms of brain tumors are not yet fully elucidated, although new factors related to the underlying pathophysiological process with possible treatment implications have been described. In recent years, the development of new anti-seizure medications (ASM), with better pharmacokinetic profiles and fewer side effects, has become a paradigm shift in many clinical scenarios in neuro-oncology, being able, for instance, to adapt epilepsy treatment to specific features of each patient. This is crucial in several situations, such as patients with cognitive/psychiatric comorbidity, pregnancy, or advanced age, among others. In this narrative review, we provide a rationale for decision-making in ASM choice for neuro-oncologic patients, highlighting the strengths and weaknesses of each drug. In addition, according to current literature evidence, we try to answer some of the most frequent questions that arise in daily clinical practice in patients with epilepsy related to brain tumors, such as, which patients are the best candidates for ASM and when to start it, what is the best treatment option for each patient, and what are the major pitfalls to be aware of during follow-up.
RESUMO
Oxidative stress is one of the factors involved in the pathogenesis of several neurodegenerative diseases. It has been reported that a secretory phospholipase A2 known as A2-EPTX-NSm1a has lower cytotoxicity in neuronal cells compared to its crude Naja sumatrana venom. In this study, A2-EPTX-NSm1a was tested for its neuroprotective activity on human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons against oxidative stress induced by hydrogen peroxide (H2O2). H2O2 treatment alone increased the caspase-3 and caspase-8 activities, whereas pre-treatment with A2-EPTX-NSm1a reduced the activity of these apoptosis-associated proteins. Moreover, A2-EPTX-NSm1a protects the morphology and ultrastructure of differentiated SH-SY5Y cells in the presence of H2O2. Oxidative stress increased the number of small mitochondria. Further evaluation showed the size of mitochondria with a length below 0.25 µm in oxidative stress conditions is higher than the control group, suggesting mitochondria fragmentation. Pre-treatment with A2-EPTX-NSm1a attenuated the number of mitochondria in cells with H2O2 Furthermore, A2-EPTX-NSm1a altered the expression of several neuroprotein biomarkers of GDNF, IL-8, MCP-1, TIMP-1, and TNF-R1 in cells under oxidative stress induced by H2O2. These findings indicate that anti-apoptosis with mitochondria-related protection, anti-inflammatory effect, and promote expression of important markers for cell survival may underlie the neuroprotective effect of A2-EPTX-NSm1a in cholinergic rich human cells under oxidative stress, a vital role in the neuronal disorder.
RESUMO
Traumatic brain injury (TBI) is a debilitating acquired neurological disorder that afflicts nearly 74 million people worldwide annually. TBI has been classified as more than just a single insult because of its associated risk toward various long-term neurological and neurodegenerative disorders. This risk may be triggered by a series of postinjury secondary molecular and cellular pathology, which may be dependent on the severity of the TBI. Among the secondary injury mechanisms, neuroinflammation may be the most crucial as it may exacerbate brain damage and lead to fatal consequences when prolonged. This Review aimed to elucidate the influence of neuroinflammatory mediators on the TBI functional and pathological outcomes, particularly focusing on inflammatory cytokines which were associated with neuronal dysfunctions in the acute and chronic stages of TBI. These cytokines include interleukins (IL) such as IL-1(beta)ß, IL-4, IL-6, IL8, IL-10, IL-18, IL-33 and tumor necrosis factor alpha (TNF-α), which have been extensively studied. Apart from these, IL-2, interferon gamma (IFN-γ), and transforming growth factor-beta (TGF-ß) may also play a significant role in the pathogenesis of TBI. These neuroinflammatory mediators may trigger a series of pathological events such as cell death, microglial suppression, and increased catecholaminergic activity. Interestingly, in the acute phase of TBI, most of these mediators may also play a neuroprotective role by displaying anti-inflammatory properties, which may convert to a pro-inflammatory action in the chronic stages post TBI. Early identification and treatment of these mediators may help the development of more effective treatment options for TBI.
Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas Traumáticas/complicações , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Microglia/metabolismoRESUMO
Ocimum sanctum is a sacred herb of India and is commonly known as 'Tulsi' or 'Holy Basil' in regional languages of the country. Various parts of O. sanctum are recognised to have remarkable therapeutic efficacy, and are therefore used in Indian traditional medicine system, Ayurveda. Scientific studies have shown that O. sanctum has a range of pharmacological activities. The presence of a substantial amount of polyphenols in O. sanctum could be the reason for its excellent bioactivity. Polyphenols are used to prevent or treat oncologic diseases due to their anti-cancer effects, which are related to activation of apoptotic signaling, cell cycle arrest, binding ability with membrane receptors, and potential effects on immunomodulation and epigenetic mechanisms. The poor bioavailability of polyphenols restricts their clinical use. The application of nanonization has been implemented to improve their bioavailability, penetrability, and prolong their anticancer action. The present review analyses the recent preclinical studies related to the chemo-preventive and therapeutic potential of polyphenols present in O. sanctum. Moreover, the current article also examines in-depth the biochemical and molecular mechanisms involved in the antineoplastic actions of the considered polyphenols.
Assuntos
Antineoplásicos , Ocimum , Óleos Voláteis , Humanos , Ocimum sanctum , Polifenóis/farmacologia , Ocimum/química , Extratos Vegetais/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Polyphenolic phytoconstituents have been widely in use worldwide for ages and are categorised as secondary metabolites of plants. The application of polyphenols such as quercetin, resveratrol, curcumin as nutritional supplements has been researched widely. The use of polyphenols and specifically quercetin, for improving memory and mental endurance has shown significant effects among rats. Even though similar results have not been resonated among humans, but preclinical results have encouraged researchers to explore other polyphenols to study the effects as supplements among athletes. The phytopharmacological research has elucidated the use of natural polyphenols to prevent and treat various physiological and metabolic disorders owing to their free radical scavenging properties, anti-inflammatory, anti-cancer, and immunomodulatory effects. In- -spite of the tremendous pharmacological profile, one of the most dominant problem regarding the use of polyphenolic compounds is their low bioavailability. Nanonization is considered as one of the most prominent approaches among many. This article aims to review and discuss the molecular mechanisms of recently developed nanocarrier-based drug delivery systems for polyphenols and their application as drugs and supplements. Nanoformulations of natural polyphenols as bioactive agents, such as quercetin, kaempferol, fisetin, rutin, hesperetin, and naringenin epigalloccatechin- 3-gallate, genistein, ellagic acid, gallic acid, chlorogenic acid, ferulic acid, curcuminoids, and stilbenes is expected to have better efficacy. These delivery systems are expected to provide higher penetrability of polyphenols at cellular levels and exhibit a controlled release of the drugs. It is widely accepted that natural polyphenols do demonstrate significant therapeutic effects. However, the hindrances in their absorption, specificity, and bioavailability can be overcome using nanotechnology.
Assuntos
Curcumina , Polifenóis , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Preparações Farmacêuticas , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Quercetina/farmacologia , Ratos , ResveratrolRESUMO
Phospholipase A2 (PLA2) toxins are one of the main toxin families found in snake venom. PLA2 toxins are associated with various detrimental effects, including neurotoxicity, myotoxicity, hemostatic disturbances, nephrotoxicity, edema, and inflammation. Although Naja sumatrana venom contains substantial quantities of PLA2 components, there is limited information on the function and activities of PLA2 toxins from the venom. In this study, a secretory PLA2 from the venom of Malaysian N. sumatrana, subsequently named A2-EPTX-Nsm1a, was isolated, purified, and characterized. A2-EPTX-Nsm1a was purified using a mass spectrometry-guided approach and multiple chromatography steps. Based on LC-MSMS, A2-EPTX-Nsm1a was found to show high sequence similarity with PLA2 from venoms of other Naja species. The PLA2 activity of A2-EPTX-Nsm1 was inhibited by 4-BPB and EDTA. A2-EPTX-Nsm1a was significantly less cytotoxic in a neuroblastoma cell line (SH-SY5Y) compared to crude venom and did not show a concentration-dependent cytotoxic activity. To our knowledge, this is the first study that characterizes and investigates the cytotoxicity of an Asp49 PLA2 isolated from Malaysian N. sumatrana venom in a human neuroblastoma cell line.
Assuntos
Venenos Elapídicos/enzimologia , Naja , Fosfolipases A2 Secretórias/química , Fosfolipases A2 Secretórias/toxicidade , Animais , Linhagem Celular Tumoral , Venenos Elapídicos/toxicidade , Humanos , Fosfolipases A2 Secretórias/isolamento & purificaçãoRESUMO
The exact etiology of Parkinson's disease (PD) remains obscure, although many cellular mechanisms including α-synuclein aggregation, oxidative damage, excessive neuroinflammation, and dopaminergic neuronal apoptosis are implicated in its pathogenesis. There is still no disease-modifying treatment for PD and the gold standard therapy, chronic use of levodopa is usually accompanied by severe side effects, mainly levodopa-induced dyskinesia (LID). Hence, the elucidation of the precise underlying molecular mechanisms is of paramount importance. Fyn is a tyrosine phospho-transferase of the Src family nonreceptor kinases that is highly implicated in immune regulation, cell proliferation and normal brain development. Accumulating preclinical evidence highlights the emerging role of Fyn in key aspects of PD and LID pathogenesis: it may regulate α-synuclein phosphorylation, oxidative stress-induced dopaminergic neuronal death, enhanced neuroinflammation and glutamate excitotoxicity by mediating key signaling pathways, such as BDNF/TrkB, PKCδ, MAPK, AMPK, NF-κB, Nrf2, and NMDAR axes. These findings suggest that therapeutic targeting of Fyn or Fyn-related pathways may represent a novel approach in PD treatment. Saracatinib, a nonselective Fyn inhibitor, has already been tested in clinical trials for Alzheimer's disease, and novel selective Fyn inhibitors are under investigation. In this comprehensive review, we discuss recent evidence on the role of Fyn in the pathogenesis of PD and LID and provide insights on additional Fyn-related molecular mechanisms to be explored in PD and LID pathology that could aid in the development of future Fyn-targeted therapeutic approaches.
Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/enzimologia , Terapia de Alvo Molecular , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/enzimologia , Doença de Parkinson/metabolismo , Animais , Humanos , Levodopa , Modelos Biológicos , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-fynRESUMO
Post-traumatic epilepsy (PTE) is one of the detrimental outcomes of traumatic brain injury (TBI), resulting in recurrent seizures that impact daily life. However, the pathological relationship between PTE and TBI remains unclear, and commonly prescribed antiepileptic drugs (AED) are ineffective against PTE. Fortunately, emerging research implicates neuroinflammation, particularly, tumor necrosis factor-α (TNF-α), as the key mediator for PTE development. Thus, this review aims to examine the available literature regarding the role of TNF-α in PTE pathology and, subsequently, evaluate TNF-α as a possible target for its treatment. A comprehensive literature search was conducted on four databases including PubMed, CINAHL, Embase, and Scopus. Articles with relevance in investigating TNF-α expression in PTE were considered in this review. Critical evaluation of four articles that met the inclusion criteria suggests a proportional relationship between TNF-α expression and seizure susceptibilit and that neutralization or suppression of TNF-α release results in reduced susceptibility to seizures. In conclusion, this review elucidates the importance of TNF-α expression in epileptogenesis postinjury and urges future research to focus more on clinical studies involving TNF-α, which may provide clearer insight into PTE prevention, therefore improving the lives of PTE patients.
Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Anticonvulsivantes/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Humanos , Convulsões/tratamento farmacológico , Convulsões/etiologia , Fator de Necrose Tumoral alfaRESUMO
Epilepsy is a serious neurological disorder affecting around 70 million people globally and is characterized by spontaneous recurrent seizures. Recent evidence indicates that dysfunction in metabolic processes can lead to the alteration of neuronal and network excitability, thereby contributing to epileptogenesis. Developing a suitable animal model that can recapitulate all the clinical phenotypes of human metabolic epilepsy (ME) is crucial yet challenging. The specific environment of many symptoms as well as the primary state of the applicable neurobiology, genetics, and lack of valid biomarkers/diagnostic tests are the key factors that hinder the process of developing a suitable animal model. The present systematic review summarizes the current state of available animal models of metabolic dysfunction associated with epileptic disorders. A systematic search was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model. A range of electronic databases, including google scholar, Springer, PubMed, ScienceDirect, and Scopus, were scanned between January 2000 and April 2020. Based on the selection criteria, 23 eligible articles were chosen and are discussed in the current review. Critical analysis of the selected literature delineated several available approaches that have been modeled into metabolic epilepsy and pointed out several drawbacks associated with the currently available models. The result describes available models of metabolic dysfunction associated with epileptic disorder, such as mitochondrial respiration deficits, Lafora disease (LD) model-altered glycogen metabolism, causing epilepsy, glucose transporter 1 (GLUT1) deficiency, adiponectin responsive seizures, phospholipid dysfunction, glutaric aciduria, mitochondrial disorders, pyruvate dehydrogenase (PDH) α-subunit gene (PDHA1), pyridoxine dependent epilepsy (PDE), BCL2-associated agonist of cell death (BAD), Kcna1 knock out (KO), and long noncoding RNAs (lncRNA) cancer susceptibility candidate 2 (lncRNA CASC2). Finally, the review highlights certain focus areas that may increase the possibilities of developing more suitable animal models and underscores the importance of the rationalization of animal models and evaluation methods for studying ME. The review also suggests the pressing need of developing precise robust animal models and evaluation methods for investigating ME.
RESUMO
Parkinson's disease (PD) is the most common neurodegenerative movement disorder without any objective biomarker available to date. Increasing evidence highlights the critical role of neuroinflammation, including T cell responses, and spreading of aggregated α-synuclein in PD progression. Lymphocyte-activation gene 3 (LAG3) belongs to the immunoglobulin (Ig) superfamily expressed by peripheral immune cells, microglia and neurons and plays a key role in T cell regulation. The role of LAG3 has been extensively investigated in several human cancers, whereas until recently, the role of LAG3 in the central nervous system (CNS) has been largely unknown. Accumulating evidence highlights the potential role of LAG3 in PD pathogenesis, mainly by binding to α-synuclein fibrils and affecting its endocytosis and intercellular transmission, which sheds more light on the connection between immune dysregulation and α-synuclein spreading pathology. Serum and cerebrospinal fluid (CSF) soluble LAG3 (sLAG3) levels have been demonstrated to be potentially associated with PD development and clinical phenotype, suggesting that sLAG3 could represent an emerging PD biomarker. Specific single nucleotide polymorphisms (SNPs) of the LAG3 gene have been also related to PD occurrence especially in the female population, enlightening the pathophysiological background of gender-related PD clinical differences. Given also the ongoing clinical trials investigating various LAG3-targeting strategies in human diseases, new opportunities are being developed for PD treatment research. In this review, we discuss recent preclinical and clinical evidence on the role of LAG3 in PD pathogenesis and biomarker potential, aiming to elucidate its underlying molecular mechanisms.
RESUMO
Alzheimer's disease (AD) is the second most occurring neurological disorder after stroke and is associated with cerebral hypoperfusion, possibly contributing to cognitive impairment. In the present study, neuroprotective and anti-AD effects of embelin were evaluated in chronic cerebral hypoperfusion (CCH) rat model using permanent bilateral common carotid artery occlusion (BCCAO) method. Rats were administered with embelin at doses of 0.3, 0.6 or 1.2 mg/kg (i.p) on day 14 post-surgery and tested in Morris water maze (MWM) followed by electrophysiological recordings to access cognitive abilities and synaptic plasticity. The hippocampal brain regions were extracted for gene expression and neurotransmitters analysis. Treatment with embelin at the doses of 0.3 and 0.6 mg/kg significantly reversed the spatial memory impairment induced by CCH in rats. Embelin treatment has significantly protected synaptic plasticity impairment as assessed by hippocampal long-term potentiation (LTP) test. The mechanism of this study demonstrated that embelin treatment alleviated the decreased expression of BDNF, CREB1, APP, Mapt, SOD1 and NFκB mRNA levels caused by CCH rats. Furthermore, treatment with embelin demonstrated neuromodulatory activity by its ability to restore hippocampal neurotransmitters. Overall these data suggest that embelin improve memory and synaptic plasticity impairment in CCH rats and can be a potential drug candidate for neurodegenerative disease-related cognitive disorders.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzoquinonas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Disfunção Cognitiva/prevenção & controle , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto , Neurônios/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Memória Espacial/efeitos dos fármacos , Superóxido Dismutase-1/genética , Proteínas tau/genéticaRESUMO
Epilepsy is a neuronal disorder associated with several neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Despite having more than 20 anti-epileptic drugs (AEDs), they only provide a symptomatic treatment. As well as, currently available AEDs also displayed cognitive alterations in addition to retarding seizure. This leads to the need for exploring new molecules that not only retard seizure but also improve cognitive impairment. Embelin (EMB) is a benzoquinone derivative which has already demonstrated its pharmacological potentials against arrays of neurological conditions. The current study developed a chronic kindling model in adult zebrafish by using repeated administration of small doses of pentylenetetrazole (PTZ) and a single dose of Kainic acid (KA) to investigate the associated memory impairment. This has been done by using the three-axis maze which is a conventional method to test the learning ability and egocentric memory in zebrafish. As well as, the ameliorative potential of EMB has been evaluated against chronic epilepsy-related memory alterations. Moreover the expression level of pro-inflammatory genes such as C-C motif ligand 2 (CCL2), toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interferon-γ (IFN-γ) were evaluated. The level of several neurotransmitters such as γ-aminobutyric acid (GABA), acetylcholine (Ach) and glutamate (Glu) was evaluated by liquid chromatography-mass spectrometry (LC-MS). The results showed that daily dose of PTZ 80 mg/kg for 10 days successfully induces a kindling effect in zebrafish, whereas the single dose of KA did not. As compared to control, the PTZ and KA group demonstrates impairment in memory as demonstrated by the three-axis maze. The PTZ group treated with a series of EMB doses (ranging from 0.156 to 0.625 mg/kg) was found to have retarded seizure as well as significantly reduces epilepsy-induced memory alteration. In addition, EMB treatment reduces the expression of inflammatory markers implicating its anti-inflammatory potential. Moreover, levels of GABA, Ach, and glutamate are increased in EMB administered group as compared to the PTZ administered group. Overall, findings demonstrate that EMB might be a potential candidate against chronic epilepsy-related cognitive dysfunction as EMB prevents the seizures, so we expect it to prevent the associated neuroinflammation and learning deficit.
RESUMO
Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.