Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480682

RESUMO

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Assuntos
Encefalopatias , Humanos , Acetilação , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Padrões de Herança , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
2.
Clin Genet ; 105(5): 488-498, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38193334

RESUMO

ALDH1L2, a mitochondrial enzyme in folate metabolism, converts 10-formyl-THF (10-formyltetrahydrofolate) to THF (tetrahydrofolate) and CO2. At the cellular level, deficiency of this NADP+-dependent reaction results in marked reduction in NADPH/NADP+ ratio and reduced mitochondrial ATP. Thus far, a single patient with biallelic ALDH1L2 variants and the phenotype of a neurodevelopmental disorder has been reported. Here, we describe another patient with a neurodevelopmental disorder associated with a novel homozygous missense variant in ALDH1L2, Pro133His. The variant caused marked reduction in the ALDH1L2 enzyme activity in skin fibroblasts derived from the patient as probed by 10-FDDF, a stable synthetic analog of 10-formyl-THF. Additional associated abnormalities in these fibroblasts include reduced NADPH/NADP+ ratio and pool of mitochondrial ATP, upregulated autophagy and dramatically altered metabolomic profile. Overall, our study further supports a link between ALDH1L2 deficiency and abnormal neurodevelopment in humans.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Trifosfato de Adenosina , NADP/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenótipo
4.
Kidney Int Rep ; 6(2): 460-471, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615071

RESUMO

INTRODUCTION: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of chronic kidney disease during childhood. Identification of 63 monogenic human genes has delineated 12 distinct pathogenic pathways. METHODS: Here, we generated 2 independent sets of nephrotic syndrome (NS) candidate genes to augment the discovery of additional monogenic causes based on whole-exome sequencing (WES) data from 1382 families with NS. RESULTS: We first identified 63 known monogenic causes of NS in mice from public databases and scientific publications, and 12 of these genes overlapped with the 63 known human monogenic SRNS genes. Second, we used a set of 64 genes that are regulated by the transcription factor Wilms tumor 1 (WT1), which causes SRNS if mutated. Thirteen of these WT1-regulated genes overlapped with human or murine NS genes. Finally, we overlapped these lists of murine and WT1 candidate genes with our list of 120 candidate genes generated from WES in 1382 NS families, to identify novel candidate genes for monogenic human SRNS. Using this approach, we identified 7 overlapping genes, of which 3 genes were shared by all datasets, including SYNPO. We show that loss-of-function of SYNPO leads to decreased CDC42 activity and reduced podocyte migration rate, both of which are rescued by overexpression of wild-type complementary DNA (cDNA), but not by cDNA representing the patient mutation. CONCLUSION: Thus, we identified 3 novel candidate genes for human SRNS using 3 independent, nonoverlapping hypotheses, and generated functional evidence for SYNPO as a novel potential monogenic cause of NS.

5.
Front Pediatr ; 8: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117824

RESUMO

Background: Inhibitor of kappa kinase 2 (IKK2) deficiency is a recently described combined immunodeficiency. It undermines the nuclear factor-kappa B (NF-κB) activation pathway. Methods: The clinical and immunological data of four patients diagnosed with combined immunodeficiency (CID) from two related Saudi families were collected. Autozygosity mapping of all available members and whole exome sequencing of the index case were performed to define the genetic etiology. Results: The patients had early onset (2-4 months of age) severe infections caused by viruses, bacteria, mycobacteria, and fungi. They all had hypogammaglobulinemia and low absolute lymphocyte count. Their lymphocytes failed to respond to PHA mitogen stimulation. A novel homozygous non-sense mutation in the IKBKB gene, c.850C>T (p. Arg284*) was identified in the index patient and segregated with the disease in the rest of the family. He underwent hematopoietic stem cell transplantation (HSCT) from a fully matched sibling with no conditioning. The other three patients succumbed to their disease. Interestingly, all patients had delayed umbilical cord separation. Conclusion: IKK2 deficiency causes CID with high mortality. Immune reconstitution with HSCT should be considered as early as possible. Delayed umbilical cord separation in CID patients may be a clue to IKK2 deficiency.

6.
Am J Hum Genet ; 106(2): 246-255, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004447

RESUMO

Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms . Dysplasia of corpus callosum with focal thinning of the posterior part and characteristic facial features appeared to be unifying findings. RalGAPA1 was absent in the fibroblasts derived from two affected individuals suggesting a loss-of-function effect of the RALGAPA1 variants. Consequently, RalA activity was increased in these cell lines, which is in keeping with the idea that RalGAPA1 deficiency causes a constitutive activation of RalA. Additionally, levels of RalGAPB, a scaffolding subunit of the RalGAP complex, were dramatically reduced, indicating a dysfunctional RalGAP complex. Moreover, RalGAPA1 deficiency clearly increased cell-surface levels of lipid raft components in detached fibroblasts, which might indicate that anchorage-dependence of cell growth signaling is disturbed. Our findings indicate that the dysregulation of the RalA pathway has an important impact on neuronal function and brain development. In light of the partially overlapping phenotype between RALA- and RALGAPA1-associated diseases, it appears likely that dysregulation of the RalA signaling pathway leads to a distinct group of genetic syndromes that we suggest could be named RALopathies.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos/etiologia , Proteínas Ativadoras de GTPase/genética , Hipotonia Muscular/etiologia , Mutação , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/etiologia , Espasmos Infantis/etiologia , Alelos , Movimento Celular , Proliferação de Células , Pré-Escolar , Família , Transtornos da Alimentação e da Ingestão de Alimentos/patologia , Feminino , Humanos , Lactente , Masculino , Hipotonia Muscular/patologia , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Espasmos Infantis/patologia
7.
Nat Med ; 26(2): 244-251, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959991

RESUMO

Mucociliary clearance, the physiological process by which mammalian conducting airways expel pathogens and unwanted surface materials from the respiratory tract, depends on the coordinated function of multiple specialized cell types, including basal stem cells, mucus-secreting goblet cells, motile ciliated cells, cystic fibrosis transmembrane conductance regulator (CFTR)-rich ionocytes, and immune cells1,2. Bronchiectasis, a syndrome of pathological airway dilation associated with impaired mucociliary clearance, may occur sporadically or as a consequence of Mendelian inheritance, for example in cystic fibrosis, primary ciliary dyskinesia (PCD), and select immunodeficiencies3. Previous studies have identified mutations that affect ciliary structure and nucleation in PCD4, but the regulation of mucociliary transport remains incompletely understood, and therapeutic targets for its modulation are lacking. Here we identify a bronchiectasis syndrome caused by mutations that inactivate NIMA-related kinase 10 (NEK10), a protein kinase with previously unknown in vivo functions in mammals. Genetically modified primary human airway cultures establish NEK10 as a ciliated-cell-specific kinase whose activity regulates the motile ciliary proteome to promote ciliary length and mucociliary transport but which is dispensable for normal ciliary number, radial structure, and beat frequency. Together, these data identify a novel and likely targetable signaling axis that controls motile ciliary function in humans and has potential implications for other respiratory disorders that are characterized by impaired mucociliary clearance.


Assuntos
Ciliopatias/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Depuração Mucociliar , Quinases Relacionadas a NIMA/metabolismo , Adolescente , Adulto , Separação Celular , Criança , Ciliopatias/metabolismo , Células Epiteliais/metabolismo , Exoma , Feminino , Citometria de Fluxo , Células HEK293 , Homozigoto , Humanos , Microscopia de Contraste de Fase , Microscopia de Vídeo , Mutação , Fenótipo , Proteoma , Sistema Respiratório , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X , Adulto Jovem
8.
Clin Genet ; 97(4): 661-665, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898316

RESUMO

Erythrokeratoderma (EK) is heterogeneous clinical entity characterized by excessive scaling with resulting erythrokeratotic plaques. Several genes have been linked to EK and they encode a number of proteins that are important for the integrity of the keratinocyte layer of the epidermis. PERP is a transcription factor that is activated by both p53 and p63. However, its deficiency in a mouse model appears to only recapitulate p63-mediated role in skin development and organization. We report an extended multiplex consanguineous family in which an EK phenotype with a striking similarity to that observed in Perp-/- mice, is mapped to an autozygous region on chromosome 6 that spans PERP. Whole-exome sequencing revealed a novel variant in PERP that fully segregated with the phenotype. Functional analysis of patient- and control-derived keratinocytes revealed a deleterious effect of the identified variant on the intracellular localization of PERP. A previous report showed that PERP mutation causes a dominant form of keratoderma but a single patient in that report with a homozygous variant in PERP suggests that recessive inheritance is also possible. Our results, therefore, support the establishment of an autosomal recessive PERP-related EK phenotype in humans.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas de Membrana/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Epiderme/metabolismo , Epiderme/patologia , Regulação da Expressão Gênica/genética , Genes Recessivos/genética , Genes Supressores de Tumor , Homozigoto , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Leucemia Mieloide Aguda/patologia , Camundongos , Sequenciamento do Exoma , Adulto Jovem
9.
J Allergy Clin Immunol ; 144(2): 574-583.e5, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872117

RESUMO

BACKGROUND: The tumor TNF receptor family member 4-1BB (CD137) is encoded by TNFRSF9 and expressed on activated T cells. 4-1BB provides a costimulatory signal that enhances CD8+ T-cell survival, cytotoxicity, and mitochondrial activity, thereby promoting immunity against viruses and tumors. The ligand for 4-1BB is expressed on antigen-presenting cells and EBV-transformed B cells. OBJECTIVE: We investigated the genetic basis of recurrent sinopulmonary infections, persistent EBV viremia, and EBV-induced lymphoproliferation in 2 unrelated patients. METHODS: Whole-exome sequencing, immunoblotting, immunophenotyping, and in vitro assays of lymphocyte and mitochondrial function were performed. RESULTS: The 2 patients shared a homozygous G109S missense mutation in 4-1BB that abolished protein expression and ligand binding. The patients' CD8+ T cells had reduced proliferation, impaired expression of IFN-γ and perforin, and diminished cytotoxicity against allogeneic and HLA-matched EBV-B cells. Mitochondrial biogenesis, membrane potential, and function were significantly reduced in the patients' activated T cells. An inhibitory antibody against 4-1BB recapitulated the patients' defective CD8+ T-cell activation and cytotoxicity against EBV-infected B cells in vitro. CONCLUSION: This novel immunodeficiency demonstrates the critical role of 4-1BB costimulation in host immunity against EBV infection.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Transtornos Linfoproliferativos/imunologia , Mutação de Sentido Incorreto , Doenças da Imunodeficiência Primária/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Pré-Escolar , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Feminino , Herpesvirus Humano 4/genética , Humanos , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Transtornos Linfoproliferativos/virologia , Masculino , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/patologia , Doenças da Imunodeficiência Primária/virologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Sequenciamento do Exoma
11.
Genet Med ; 20(12): 1609-1616, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29620724

RESUMO

PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS: Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.


Assuntos
Exoma/genética , Heterogeneidade Genética , Predisposição Genética para Doença , Anormalidades Musculoesqueléticas/genética , Alelos , Proteínas Sanguíneas/genética , Hidrolases de Éster Carboxílico , Estudos de Coortes , Exorribonucleases/genética , Feminino , Proteínas Fetais/genética , Efeito Fundador , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Anormalidades Musculoesqueléticas/classificação , Anormalidades Musculoesqueléticas/patologia , Proteínas de Neoplasias/genética , Proteínas Oncogênicas/genética , Fenótipo , Receptores de Superfície Celular/genética , Proteína Wnt3A/genética
12.
Am J Hum Genet ; 100(5): 831-836, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475863

RESUMO

Larsen syndrome is characterized by the dislocation of large joints and other less consistent clinical findings. Heterozygous FLNB mutations account for the majority of Larsen syndrome cases, but biallelic mutations in CHST3 and B4GALT7 have been more recently described, thus confirming the existence of recessive forms of the disease. In a multiplex consanguineous Saudi family affected by severe and recurrent large joint dislocation and severe myopia, we identified a homozygous truncating variant in GZF1 through a combined autozygome and exome approach. Independently, the same approach identified a second homozygous truncating GZF1 variant in another multiplex consanguineous family affected by severe myopia, retinal detachment, and milder skeletal involvement. GZF1 encodes GDNF-inducible zinc finger protein 1, a transcription factor of unknown developmental function, which we found to be expressed in the eyes and limbs of developing mice. Global transcriptional profiling of cells from affected individuals revealed a shared pattern of gene dysregulation and significant enrichment of genes encoding matrix proteins, including P3H2, which hints at a potential disease mechanism. Our results suggest that GZF1 mutations cause a phenotype of severe myopia and significant articular involvement not previously described in Larsen syndrome.


Assuntos
Heterogeneidade Genética , Fatores de Transcrição Kruppel-Like/genética , Osteocondrodisplasias/genética , Adolescente , Alelos , Criança , Pré-Escolar , Exoma , Feminino , Regulação da Expressão Gênica , Genes Recessivos , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Análise de Sequência de DNA , Adulto Jovem
13.
Hum Genet ; 136(1): 99-105, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838789

RESUMO

Ectodermal dysplasia is a highly heterogeneous group of disorders that variably affect the derivatives of the ectoderm, primarily skin, hair, nails and teeth. TP63, itself mutated in ectodermal dysplasia, links many other ectodermal dysplasia disease genes through a regulatory network that maintains the balance between proliferation and differentiation of the epidermis and other ectodermal derivatives. The ectodermal knockout phenotype of five mouse genes that regulate and/or are regulated by TP63 (Irf6, Ikkα, Ripk4, Stratifin, and Kdf1) is strikingly similar and involves abnormal balance towards proliferation at the expense of differentiation, but only the first three have corresponding ectodermal phenotypes in humans. We describe a multigenerational Saudi family with an autosomal dominant form of hypohidrotic ectodermal dysplasia in which positional mapping and exome sequencing identified a novel variant in KDF1 that fully segregates with the phenotype. The recapitulation of the phenotype we observe in this family by the Kdf1-/- mouse suggests a causal role played by the KDF1 variant.


Assuntos
Diferenciação Celular , Displasia Ectodérmica/genética , Queratinócitos/citologia , Proteínas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Biologia Computacional , Modelos Animais de Doenças , Feminino , Variação Genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo , Análise de Sequência de DNA , Adulto Jovem
14.
Am J Med Genet A ; 170A(5): 1245-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26749485

RESUMO

Limb reduction malformations are highly heterogeneous in their clinical presentation and so, predicting the underlying mutation on a clinical basis can be challenging. Molecular karyotyping is a powerful genomic tool that has quickly become the mainstay for the study of children with malformation syndromes. We describe three patients with major limb reduction anomalies in whom pathogenic copy number variants were identified on molecular karyotyping. These include a patient with hypoplastic phalanges and absent hallux bilaterally with de novo deletion of 11.9 Mb on 7p21.1-22.1 spanning 63 genes including RAC1, another patient with severe Holt-Oram syndrome and a large de novo deletion 2.2 Mb on 12q24.13-24.21 spanning 20 genes including TBX3 and TBX5, and a third patient with acheiropodia who had a nullizygous deletion of 102 kb on 7q36.3 spanning LMBR1. We discuss the potential of these novel genomic rearrangements to improve our understanding of limb development in humans.


Assuntos
Displasia Ectodérmica/genética , Deformidades Congênitas dos Membros/genética , Proteínas de Membrana/genética , Dermatoses do Couro Cabeludo/congênito , Proteínas com Domínio T/genética , Proteínas rac1 de Ligação ao GTP/genética , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Displasia Ectodérmica/fisiopatologia , Humanos , Lactente , Deformidades Congênitas dos Membros/fisiopatologia , Masculino , Mutação , Arábia Saudita , Dermatoses do Couro Cabeludo/genética , Dermatoses do Couro Cabeludo/fisiopatologia
15.
J Med Genet ; 51(4): 271-4, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421282

RESUMO

BACKGROUND: Congenital hyperinsulinism is a genetically heterogeneous disorder, but mutations in the components of the ATP-sensitive potassium channel K(ATP) account for more than a third of all isolated congenital hyperinsulinism cases. The association between congenital hyperinsulinism and rhabdomyolysis has not been reported. OBJECTIVE: To describe significant skeletal muscle manifestations in a family with a novel mutation in KCNJ11 (encoding the Kir6.2 component of K(ATP)). METHODS: Cross-sectional analysis of members of a large multiplex consanguineous family with congenital hyperinsulinism and rhabdomyolysis using autozygosity mapping and exome sequencing. RESULTS: Five affected members of an extended consanguineous Saudi family were recruited along with relevant unaffected relatives. We were able to map an apparently novel syndrome of congenital hyperinsulinism and severe rhabdomyolysis leading to acute renal failure to a single locus that harbours KCNJ11 in which we identified a novel homozygous mutation. CONCLUSIONS: This study expands the phenotype associated with KCNJ11 loss of function in humans and calls for increased awareness of rhabdomyolysis as a potential late-onset life-threatening complication of KCNJ11-related congenital hyperinsulinism.


Assuntos
Hiperinsulinismo Congênito/complicações , Hiperinsulinismo Congênito/genética , Mutação/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Rabdomiólise/complicações , Rabdomiólise/genética , Sequência de Bases , Família , Feminino , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Síndrome , Adulto Jovem
16.
Am J Hum Genet ; 94(1): 73-9, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24360803

RESUMO

Ciliopathies are characterized by a pattern of multisystem involvement that is consistent with the developmental role of the primary cilium. Within this biological module, mutations in genes that encode components of the cilium and its anchoring structure, the basal body, are the major contributors to both disease causality and modification. However, despite rapid advances in this field, the majority of the genes that drive ciliopathies and the mechanisms that govern the pronounced phenotypic variability of this group of disorders remain poorly understood. Here, we show that mutations in CSPP1, which encodes a core centrosomal protein, are disease causing on the basis of the independent identification of two homozygous truncating mutations in three consanguineous families (one Arab and two Hutterite) affected by variable ciliopathy phenotypes ranging from Joubert syndrome to the more severe Meckel-Gruber syndrome with perinatal lethality and occipital encephalocele. Consistent with the recently described role of CSPP1 in ciliogenesis, we show that mutant fibroblasts from one affected individual have severely impaired ciliogenesis with concomitant defects in sonic hedgehog (SHH) signaling. Our results expand the list of centrosomal proteins implicated in human ciliopathies.


Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Cílios/patologia , Proteínas Associadas aos Microtúbulos/genética , Mutação , Fenótipo , Anormalidades Múltiplas , Doenças Cerebelares/genética , Cerebelo/anormalidades , Criança , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Consanguinidade , Encefalocele/genética , Anormalidades do Olho/genética , Feminino , Homozigoto , Humanos , Lactente , Doenças Renais Císticas/genética , Masculino , Linhagem , Doenças Renais Policísticas/genética , Retina/anormalidades , Retinose Pigmentar , Transdução de Sinais
18.
Am J Hum Genet ; 93(3): 555-60, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23972372

RESUMO

Orofaciodigital syndrome (OFD) is a recognized clinical entity with core defining features in the mouth, face, and digits, in addition to various other features that have been proposed to define distinct subtypes. The three genes linked to OFD-OFD1, TMEM216, and TCTN3-play a role in ciliary biology, a finding consistent with the clinical overlap between OFD and other ciliopathies. Most autosomal-recessive cases of OFD, however, remain undefined genetically. In two multiplex consanguineous Arab families affected by OFD, we identified a tight linkage interval in chromosomal region 1q32.1. Exome sequencing revealed a different homozygous variant in DDX59 in each of the two families, and at least one of the two variants was accompanied by marked reduction in the level of DDX59. DDX59 encodes a relatively uncharacterized member of the DEAD-box-containing RNA helicase family of proteins, which are known to play a critical role in all aspects of RNA metabolism. We show that Ddx59 is highly enriched in its expression in the developing murine palate and limb buds. At the cellular level, we show that DDX59 is localized dynamically to the nucleus and the cytoplasm. Consistent with the absence of DDX59 representation in ciliome databases and our demonstration of its lack of ciliary localization, ciliogenesis appears to be intact in mutant fibroblasts but ciliary signaling appears to be impaired. Our data strongly implicate this RNA helicase family member in the pathogenesis of OFD, although the causal mechanism remains unclear.


Assuntos
Mutação/genética , Síndromes Orofaciodigitais/enzimologia , Síndromes Orofaciodigitais/genética , RNA Helicases/genética , Animais , Sequência de Bases , Cromossomos Humanos Par 1/genética , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Família , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos/genética , Humanos , Escore Lod , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem
19.
Am J Hum Genet ; 89(2): 313-9, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21835307

RESUMO

Insulin-like growth factor binding proteins (IGFBPs) play important physiological functions through the modulation of IGF signaling as well as IGF-independent mechanisms. Despite the established role of IGFs in development, a similar role for the seven known IGFBPs has not been established in humans. Here, we show that an autosomal-recessive syndrome that consists of progressive retinal arterial macroaneurysms and supravalvular pulmonic stenosis is caused by mutation of IGFBP7. Consistent with the recently established inhibitory role of IGFBP7 on BRAF signaling, the BRAF/MEK/ERK pathway is upregulated in these patients, which may explain why the cardiac phenotype overlaps with other disorders characterized by germline mutations in this pathway. The retinal phenotype appears to be mediated by a role in vascular endothelium, where IGFBP7 is highly expressed.


Assuntos
Aneurisma/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Artéria Retiniana/patologia , Adolescente , Adulto , Aneurisma/patologia , Sequência de Bases , Criança , Pré-Escolar , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Família , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Splicing de RNA/genética , Artéria Retiniana/enzimologia , Regulação para Cima/genética , Adulto Jovem
20.
Am J Hum Genet ; 89(2): 328-33, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21820096

RESUMO

Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition.


Assuntos
Actinas/metabolismo , Citoesqueleto/patologia , Displasia Ectodérmica/genética , Genes Recessivos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deformidades Congênitas dos Membros/genética , Mutação/genética , Dermatoses do Couro Cabeludo/congênito , Animais , Sequência de Bases , Pré-Escolar , Citoesqueleto/metabolismo , Análise Mutacional de DNA , Desenvolvimento Embrionário/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Lactente , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Dermatoses do Couro Cabeludo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA