Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 16(3): R57, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24890385

RESUMO

INTRODUCTION: Transforming growth factor-ßs (TGF-ßs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-ß antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-ß are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses. METHODS: Using a breast cancer progression model that exemplifies the dual role of TGF-ß, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-ß-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts. RESULTS: TGF-ß-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-ß action. An in vivo-weighted TGF-ß/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-ß/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression. CONCLUSIONS: Tumor-suppressive effects of TGF-ß persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-ß antagonists.


Assuntos
Neoplasias da Mama/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Efrinas/metabolismo , Feminino , Humanos , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno , Receptor EphA2/metabolismo , Proteína Smad2/genética , Proteína Smad3/biossíntese , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/biossíntese , Proteínas Supressoras de Tumor/antagonistas & inibidores
2.
Carcinogenesis ; 34(12): 2789-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24067898

RESUMO

Skin cancer is the most common form of cancer in the USA, with an estimated two million cases diagnosed annually. Tumor progression locus 2 (Tpl2), also known as MAP3K8, is a serine/threonine protein kinase in the mitogen-activated protein kinase signal transduction cascade. Tpl2 was identified by our laboratory as having a tumor suppressor function in skin carcinogenesis, with the absence of this gene contributing to heightened inflammation and increased skin carcinogenesis. In this study, we used gene expression profiling to compare expression levels between Tpl2 (+/+) and Tpl2 (-) (/-) keratinocytes. We identified over 2000 genes as being differentially expressed between genotypes. Functional annotation analysis identified cancer, cell growth/proliferation, cell death, cell development, cell movement and cell signaling as the top biological processes to be differentially regulated between genotypes. Further microarray analysis identified several candidate genes, including Mmp1b, Mmp2, Mmp9 and Mmp13, involved in migration and invasion to be upregulated in Tpl2 (-) (/-) keratinocytes. Moreover, Tpl2 (-/-) keratinocytes had a significant downregulation in the matrix metalloproteinase (MMP) inhibitor Timp3. Real-time PCR validated the upregulation of the MMPs in Tpl2 (-/-) keratinocytes and zymography confirmed that MMP2 and MMP9 activity was higher in conditioned media from Tpl2 (-/-) keratinocytes. Immunohistochemistry confirmed higher MMP9 staining in 12-O-tetradecanoylphorbol-13-acetate-treated skin from Tpl2 (-/-) mice and grafted tumors formed from v-ras(Ha) retrovirus-infected Tpl2 (-/-) keratinocytes. Additionally, Tpl2 (-/-) keratinocytes had significantly higher invasion, malignant conversion rates and increased endothelial cell tube formation when compared with Tpl2 (+/+) keratinocytes. In summary, our studies reveal that keratinocytes from Tpl2 (-/-) mice demonstrate a higher potential to be invasive and metastatic.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , MAP Quinase Quinase Quinases/genética , Invasividade Neoplásica/genética , Animais , Morte Celular/genética , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA