Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 646: 198-208, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196493

RESUMO

Polyethylene terephthalate (PET), the most abundant polyester plastic, has become a global concern due to its refractoriness and accumulation in the environment. In this study, inspired by the structure and catalytic mechanism of the native enzyme, peptides, based on supramolecular self-assembly, were developed to construct enzyme mimics for PET degradation, which were achieved by combining the enzymatic active sites of serine, histidine and aspartate with the self-assembling polypeptide MAX. The two designed peptides with differences in hydrophobic residues at two positions exhibited a conformational transition from random coil to ß-sheet by changing the pH and temperature, and the catalytic activity followed the self-assembly "switch" with the fibrils formed ß-sheet, which could catalyze PET efficiently. Although the two peptides possessed same catalytic site, they showed different catalytic activities. Analysis of the structure - activity relationship of the enzyme mimics suggested that the high catalytic activity of the enzyme mimics for PET could be attributed to the formation of stable fibers of peptides and ordered arrangement of molecular conformation; in addition, hydrogen bonding and hydrophobic interactions, as the major forces, promoted effects of enzyme mimics on PET degradation. Enzyme mimics with PET-hydrolytic activity are a promising material for degrading PET and reducing environmental pollution.


Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/química , Hidrolases/metabolismo , Hidrólise , Peptídeos/química , Domínio Catalítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA