Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 279: 116463, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749194

RESUMO

The environmental impact of oil spills is a critical concern, particularly pertaining to low sulfur marine diesel (LSMD) and high sulfur fuel oil (HSFO) that are commonly involved in coastal spills. Although transcriptomic biomonitoring of sentinel animals can be a powerful tool for assessing biological effects, conventional methods utilize lethal sampling to examine the liver. As a non-lethal alternative, we have previously shown salmonid caudal fin cyp1a1 is significantly responsive to LSMD-derived toxicants. The present study further investigated the transcriptomic biomonitoring potential of coho salmon smolt caudal fin in comparison to liver tissue in the context of LSMD and HSFO seawater accommodated fraction (seaWAF) exposure in cold-water marine environments. Assessing the toxicity of these seaWAFs involved quantifying polycyclic aromatic hydrocarbon (tPAH50) concentrations and generating gene expression profiles. Initial qPCR analyses revealed significant cyp1a1 response in both liver and caudal fin tissues of both genetic sexes to all seaWAF exposures. RNA-Seq analysis, focusing on the highest LSMD and HSFO seaWAF concentrations (28.4±1.8 and 645.08±146.3 µg/L tPAH50, respectively), revealed distinct tissue-specific and genetic sex-independent transcriptomic responses with an overall enrichment of oxidative stress, cell adhesion, and morphogenesis-related pathways. Remarkably, the caudal fin tissue exhibited transcriptomic response patterns comparable to liver tissue, particularly consistent differential expression of 33 gene transcripts in the liver (independent of sex and oil type) and 44 in the caudal fin. The present work underscores the viability of using the caudal fin as a non-lethal alternative to liver sampling for assessing and tracking oil spill exposure in marine environments.

2.
Anal Methods ; 15(44): 6040-6047, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916705

RESUMO

The current well-established chromatography and mass spectrometry based oil spill identification procedures, such as those outlined by the European Committee for Standardization, are highly reliable as methods, highly defensible in the court of law, and widely applicable to the majority of oil spill situations. Nevertheless, the methodology is time consuming and labour intensive, which may not be ideal when dealing with an emergency oil spill situation. In this study, direct analysis in real time time-of-flight mass spectrometry (DART/TOFMS) was used to successfully develop an efficient oil identification method. To confirm the accuracy of this method spilled oil samples were tested from five previous years of blind round robin testing organized by the oil spill identification network of experts (OSINET) under the Bonn Agreement. Heatmap inspection, principal component analysis and finally discriminant analysis of principal components were used to arrive at final predictions regarding the identities of the spilled oil samples. The results were compared with the results of previous gas chromatography flame ionization detection (GC/FID) and gas chromatography triple quadrupole mass spectrometry (GC/MS/MS) analyses of the same oils. While taking only about a tenth of the time, the DART/TOFMS analysis produced results similar to those of classical GC/FID and GC/MS/MS (EI+) procedures. The ability of DART/TOFMS to display this level of validity exemplifies its potential to be a new tool for supplementing classical analyses for oil spill forensics.


Assuntos
Óleos , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ionização de Chama/métodos , Medicina Legal
3.
Environ Monit Assess ; 195(3): 416, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36807828

RESUMO

Current oil spill forensic identification of source oils relies upon hydrocarbon biomarkers resistant to weathering. This international technique was developed by the European Committee for Standardization (CEN), under EN 15522-2 Oil Spill Identification guidelines. The number of biomarkers have expanded at pace with technological advances, while distinguishing new biomarkers becomes more challenging due to interference of isobaric compounds, matrix effects, and high cost of weathering experiments. Application of high-resolution mass spectrometry enabled exploration of potential polycyclic aromatic nitrogen heterocycle (PANH) oil biomarkers. The instrumentation showed reduction in isobaric and matrix interferences, allowing for identification of low-level PANH and alkylated PANHs (APANHs). Weathered oil samples, obtained from a marine microcosm weathering experiment, enabled comparison with source oils to identify new, stable forensic biomarkers. This study highlighted eight new APANH diagnostic ratios that expanded the biomarker suite, increasing the confidence for identifying highly weathered oils back to their source oil.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Nitrogênio/análise , Monitoramento Ambiental/métodos , Óleos , Hidrocarbonetos/análise , Poluição por Petróleo/análise , Biomarcadores , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 435: 129027, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35525008

RESUMO

In current oil spill forensics, diagnostic ratios of hydrocarbon biomarker responses are commonly used to compare oil spill samples to source materials in order to determine the identity of the oil. This well recognized procedure was developed by the European Committee for Standardization (CEN) with corresponding published EN 15522-2 Oil Spill Identification guidelines. However, it is further recognized that weathering can have a negative effect on some of the biomarkers used in the analysis, leading to decreased confidence in the result. In this study, polycyclic aromatic sulfur heterocycles (PASHs) and their alkylated forms (APASHs) were assessed for their potential as additional biomarkers. With the aim of identifying stable PASHs and APASHs useful as weathered oil biomarkers, the superior specificity of gas chromatography with high resolution mass spectrometry was exploited to determine chromatographic peak responses for sixteen petroleum oil samples. Extensive study, involving microcosm extreme weathering and spreadsheet development, led to the identification of 19 new diagnostic ratios based on newly discovered stable PASH and APASH biomarkers. Application of the extended diagnostic ratio suite showed high potential to improve the forensic attribution of post-spill weathered oil back to its original source.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Petróleo/análise , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Enxofre
5.
Anal Methods ; 14(7): 717-725, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35107097

RESUMO

Spilled crude oil samples contain various toxic compounds including polycyclic aromatic hydrocarbons (PAHs) as well as sulfur heterocycles (PASHs) and their related alkylated forms (APAHs and APASHs). In this study, a method was successfully developed employing a gas chromatography quadrupole time-of-flight (GC-QToF) mass spectrometer to quantitatively analyze both PAHs/APAHs and PASHs/APASHs in these samples. With GC-QToF, the monoisotopic mass of the compounds is distinguished, allowing the PASHs/APASHs to be extracted separately from the PAHs/APAHs in crude oil. A gas chromatography triple quadrupole (GC-MS/MS) mass spectrometer was also used to confirm that a GC-QToF is the preferred instrument for analyzing these compounds. With the use of PASH/APASH standards to determine response correction factors (RCFs) in relation to PAH standards, the developed method is capable of analyzing PAHs, APAHs, PASHs, and APASHs in a single injection. The use of RCFs allowed for the development of a practical polycyclic aromatic carbon (PAC) method for analyzing a total of 77 compounds of the 2 groups in crude oil. This newly developed method was applied to spilled crude oils, demonstrating its potential in toxicological study as well as oil spill forensic investigation.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Enxofre , Espectrometria de Massas em Tandem
6.
Environ Pollut ; 268(Pt A): 115351, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152634

RESUMO

We investigated the spatio-temporal trends of polycyclic aromatic compounds (PACs) deposition in the Athabasca Oil Sands Region (AOSR) between 2008 and 2017, and applied source apportionment tools to assess sources using snowpacks. Estimated PAC mass deposition was significantly correlated with crude oil production (R2 = 0.48, p = 0.03), and increased between 2008 and 2017. Loadings of alkylated PACs c1-, c2-fluorenes/pyrenes and c1-, c3-benzo[a]anthracenes/chrysenes/triphenylenes significantly increased at mid-field sites (25-50 km from central industrial reference site, AR6) (Mann-Kendall, p < 0.05) reflecting physical expansion of the AOSR. The distance from emission sources was important in the deposition of PACs, including the distance from AR6 (R2 = 0.69-0.91), nearest petcoke storage (R2 = 0.77-0.88), 0.89) and upgrader stack (R2 = 0.56-0.61). Source apportionment PAC distribution profiles of the source materials (petcokes, oil sand ores, road dust) did not show unique matching profiles with the snowpacks. However, the minimal presence of retene in petcokes and an abundance of benzo[ghi]fluoranthene in road dust was observed, and suggests potential for these compounds as chemical markers in distinguishing sources. Furthermore, correlations between PACs and selected metal(loid)s in the AOSR snowpacks were assessed to infer potential common sources. Significant positive (p < 0.05) correlations between metal(loid)s enriched in bitumen (vanadium, molybdenum, nickel) and PACs, at near to mid-field (0-50 km from AR6) sites suggests common sources or similar transfer and fate processes. The results of our study convey data necessary for monitoring studies in the constantly developing AOSR, advance our knowledge of PACs profiles in source materials (including the much less studied alkylated PACs and dibenzothiophenes), which will be valuable for other studies related to oil pollution, urban run-off and forest fires. PACs mass deposition increasing between 2008 and 2017 coincident with crude oil production, and retene and benzo[ghi]fluoranthene show potential in distinguishing AOSR sources.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Alberta , Monitoramento Ambiental , Campos de Petróleo e Gás , Compostos Orgânicos , Hidrocarbonetos Policíclicos Aromáticos/análise
7.
J Chromatogr A ; 1634: 461689, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33217705

RESUMO

Artificially weathered crude oil "spill" samples were matched to unweathered suspect "source" oils through a three-tiered approach as follows: Tier 1 gas chromatography-flame ionization detection (GC/FID), Tier 2 gas chromatography-mass spectrometry (GC/MS) diagnostic ratios, and Tier 3 multivariate statistics. This study served as proof of concept for a promising and new method of crude oil forensics that applies principal component analysis (PCA) and partial least squares discriminant analysis (PLSDA) in tandem with traditional forensic oil fingerprinting tools to confer additional confidence in challenging oil spill cases. In this study, weathering resulted in physical and chemical changes to the spilled oils, thereby decreasing the reliability of GC/FID and GC/MS diagnostic ratios in source attribution. The shortcomings of these traditional methods were overcome by applying multivariate statistical tools that enabled accurate characterization of the crude oil spill samples in an efficient and defensible manner.


Assuntos
Cromatografia Gasosa , Ionização de Chama , Ciências Forenses/métodos , Cromatografia Gasosa-Espectrometria de Massas , Poluição por Petróleo/análise , Petróleo/análise , Análise Multivariada , Análise de Componente Principal , Reprodutibilidade dos Testes
8.
Anal Methods ; 12(43): 5236-5246, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33084639

RESUMO

Frequent small-scale environmental releases of lubricating (lube) oils have deleterious effects on aquatic ecosystems. In the event of a spill, oil fingerprinting is critical to source attribution, clean-up procedures, and liability assignment. Oil forensic investigations are particularly challenging when oils are weathered over an extended period of time, as a large number of biomarkers become lost and the chemical composition changes significantly from its source. This study simulated an environmental case in which long-term weathered lube oil "spill" samples were matched to unweathered suspect "source" oils. While traditional oil fingerprinting techniques including GC/FID and GC/MS diagnostic ratios were insufficient for reliably attributing the source, a comprehensive and systematically tiered approach proved successful. The proposed methodology featured three tiers: Tier 1 GC/FID, Tier 2 GC/MS diagnostic ratios, and Tier 3 multivariate statistics. This novel approach provided environmental chemists with a powerful tool for dealing with an otherwise extremely challenging lube oil forensic investigation.

9.
Chemosphere ; 260: 127641, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688322

RESUMO

The atmospheric deposition of polycyclic aromatic compounds (PACs) is considered a major pathway to isolated lakes and bogs in the Athabasca oil sands region (AOSR), Canada. However, the suite of PACs measured has been limited. We report the detailed depositional history of nitrogen and sulphur heterocyclic PACs using a 210Pb dated sediment core (1914-2015) near major developments in the AOSR. We observed (1) an exponential growth in the deposition of heterocyclic PACs to recent times with an average doubling time of 12 years, (2) significant breakpoints in PAC fluxes in the mid to late 1980s, and (3) a synchronous increase of PACs with crude oil production (r2 = 0.82, p = 0.001). NPACs were not detected prior to the 1960s in the sediment core studied, suggesting they may hold promise in serving as indicators for atmospheric PAC deposition of industrial origin. Furthermore, a change in heterocyclic PAC distribution profiles beginning in the 1970-1980s, after the onset of mining, resembling a petcoke signature, was also observed. Significant positive correlations (p < 0.05) were observed between heterocyclic PACs, and several metal(loid)s, including priority pollutant elements, chromium and beryllium, and rare earth elements, cerium, lanthanum and yttrium (r2 > 0.75), suggesting the potential of a common source or similar transport and fate mechanisms. Significant negative or no correlations were observed between heterocyclic PACs and other metal(loid)s, including vanadium, total mercury and lead, possibly reflecting the impact of broader regulatory controls introduced in the mid-1970s on some metal(loids) but not on PACs, including the installation of electrostatic precipitators in major upgrader stacks.


Assuntos
Monitoramento Ambiental , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Alberta , Canadá , Lagos , Mineração , Nitrogênio , Compostos Orgânicos , Petróleo/análise , Compostos Policíclicos , Áreas Alagadas
10.
Artigo em Inglês | MEDLINE | ID: mdl-32223371

RESUMO

Observations made for the analysis of the oil spill dispersant tracer dioctyl sulfosuccinate (DOSS) during LC50 toxicity testing, highlighted a stability issue for this tracer compound in seawater. A liquid chromatography high-resolution quadrupole time-of-flight mass spectrometry (LC/QToF) was used to confirm monooctyl sulfosuccinate (MOSS) as the only significant DOSS breakdown product, and not the related isomer, 4-(2-ethylhexyl) 2-sulfobutanedioate. Combined analysis of DOSS and MOSS was shown to be applicable to monitoring of spill dispersants Corexit® EC9500A, Finasol OSR52, Slickgone NS, and Slickgone EW. The unassisted conversion of DOSS to MOSS occurred in all four oil spill dispersants solubilized in seawater, although differences were noted in the rate of MOSS formation. A marine microcosm study of Corexit EC9500A, the formulation most rapid to form MOSS, provided further evidence of the stoichiometric conversion of DOSS to MOSS under conditions relevant to real world dilbit spill. Results supported combined DOSS and MOSS analysis for the monitoring of spill dispersant in a marine environment, with a significant extension of sample collection time by 10 days or longer in cooler conditions. Implications of the unassisted formation of MOSS and combined DOSS:MOSS analysis are discussed in relation to improving dispersant LC50 toxicity studies.


Assuntos
Ácido Dioctil Sulfossuccínico/toxicidade , Monitoramento Ambiental/métodos , Hidrocarbonetos/toxicidade , Lipídeos/toxicidade , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cromatografia Líquida , Ácido Dioctil Sulfossuccínico/análise , Hidrocarbonetos/análise , Dose Letal Mediana , Lipídeos/análise , Microbiota/efeitos dos fármacos , Compostos Orgânicos/análise , Compostos Orgânicos/toxicidade , Petróleo/análise , Poluição por Petróleo/análise , Salmão/crescimento & desenvolvimento , Água do Mar/química , Água do Mar/microbiologia , Succinatos/análise , Succinatos/toxicidade , Tensoativos/análise , Testes de Toxicidade , Poluentes Químicos da Água/análise
11.
J Chromatogr A ; 1615: 460775, 2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-31959455

RESUMO

The international trade in illegally logged and environmentally endangered timber has spurred enforcement agencies to seek additional technical procedures for the identification of wood species. All Dalbergia species are listed under the Convention on International Trade in Endangered Species (CITES) which is the reason this genus was chosen for study. Multiple sources of the heartwood from different Dalbergia species were extracted and chromatographic profiles collected by gas chromatography with high resolution quadrupole Time of Flight mass spectrometry (GC/QToF). The collected data was mined to select peaks and mass ions representative of the investigated Dalbergia species, and used to develop a Microsoft Excel® template offering immediate graphical representation of the results. Using wood specimens sourced from different xylaria, this graphical fingerprint proved adept at definitive identification of Dalbergia species. The CITES Appendix I species, D. nigra, was easily distinguished from D. melanoxylon and look-alike species of other genera. Similarly, a number of other Dalbergia species were differentiated using this current approach. Kernel discrimination analysis (KDA) was applied to increase the confidence of the species identification. The mislabeling of specimens appears to be common, and the emerging technique of GC/QToF in combination with other techniques, offers improved confidence in identification. GC/QToF further provides automation, the dimension of chromatography to avoid interferences, and production of reproducible electron impact positive (EI+) spectra. The prospect of building an EI+ spectral database for future wood identification is an important feature considering the limited accessibility of authenticated wood species specimens.


Assuntos
Botânica/métodos , Comércio/ética , Comércio/métodos , Dalbergia/química , Dalbergia/classificação , Cromatografia Gasosa-Espectrometria de Massas , Madeira/química , Análise Discriminante , Espécies em Perigo de Extinção , Internacionalidade , Íons/análise
12.
Environ Sci Technol ; 54(4): 2228-2243, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31968936

RESUMO

A diagnostic ratio forensics tool, similar to that recognized internationally for oil spill source identification, is proposed for use in conjunction with existing LC/QToF quantitative methodology for bitumen-derived water-soluble organics (WSOs). The concept recognizes that bitumen WSOs bear a chemical skeletal relationship to stearane and hopane oil biomarkers. The method uses response ratios for 50 selected WSOs compared between samples by their relative percent difference and adopted acceptance criteria. Oil sands process-affected water (OSPW) samples from different locations within a single tailings pond were shown to match, while those from different industrial sites did not. Acid extractable organic samples collected over 3 weeks from the same location within a single tailings pond matched with each other; as did temporal OSPW samples a year apart. Blind quality assurance samples of OSPW diluted in surface waters were positively identified to their corresponding OSPW source. No interferences were observed from surface waters, and there was no match between bitumen-influenced groundwater and OSPW samples, as expected for different sources. Proof of concept for OSPW source identification using diagnostic ratios was demonstrated, with anticipated application in the tracking of OSPW plumes in surface receiving waters, together with the potential for confirmation of source.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Ácidos Carboxílicos , Areia
13.
J Chromatogr A ; 1598: 113-121, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987784

RESUMO

A high resolution mass spectrometry method was developed for the environmental impact monitoring of oil spill dispersants. Previously reported instability of dioctyl sulfosuccinate (DOSS) dispersant tracer was addressed by the new procedure. The method monitors both DOSS and its degradation product, monooctyl sulfosuccinate (MOSS), by liquid chromatography time-of-flight mass spectrometry. The related isomer, 4-(2-ethylhexyl) 2-sulfobutanedioate, was chromatographically resolved from MOSS but was not a product of DOSS degradation. Using this direct injection method (10 µL), the practical lower limit of quantitation was 0.5 nM for each analyte, a concentration equivalent to 0.22 ng mL-1, or 0.30 ng mL-1 including initial dilution factor with acetonitrile. The method was shown applicable to analysis of the dispersants Corexit® EC9500 A, Finasol OSR 52, Slickgone NS, and Slickgone EW for which DOSS is an active ingredient. A marine microcosm study of Corexit EC9500A, together with diluted bitumen (dilbit), at 15 ± 1 °C, provided evidence of the stoichiometric conversion of DOSS to MOSS under conditions reflecting a western Canadian marine environment. The advantage of the developed method is in its ability to extend environmental seawater sample collection time from 4 days for DOSS alone, to 14 days when both DOSS and MOSS are simultaneously analysed and results combined. The collection time is likely extended beyond the 14 day period with cooler temperatures. Preservation of collected seawater samples using sodium hydroxide, converting DOSS into MOSS in situ, was rejected due to stability issues. Addition of disodium ethylenediaminetetraacetic acid did not improve hold times, thus eliminating the theory of cation induced micelle effects causing DOSS loss.


Assuntos
Ácido Dioctil Sulfossuccínico/química , Monitoramento Ambiental/métodos , Lipídeos/química , Água do Mar/química , Succinatos/química , Tensoativos/análise , Canadá , Cromatografia Líquida , Lipídeos/análise , Compostos Orgânicos/análise , Tensoativos/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
14.
Environ Sci Technol ; 53(6): 2981-2989, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30741540

RESUMO

Polycyclic aromatic compounds (PACs) can have multiple sources in the Athabasca Oil Sands Region (AOSR). The current study was designed to identify and explore the potential of nitrogen heterocyclic PACs (NPACs) as source indicators in snowpack, lake sediment and passive air samples from the AOSR during 2014-2015. Source samples including petroleum coke (petcoke), haul road dust, and unprocessed oil sands were also analyzed. Samples were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, and liquid chromatography-high resolution Orbitrap mass spectrometry. Over 200 NPACs were identified and classified into at least 24 isomer groups, including alkylated carbazoles, benzocarbazoles, and indenoquinolines. Levels of NPACs in environmental samples decreased with distance from the main developments and with increasing depth in lake sediments but were detected within 50 km from the major developments. The composition profiles of several NPAC isomer classes, such as dimethylcarbazoles, showed that petcoke had a distinct distribution of NPACs compared to the haul road dust and unprocessed oil sands ores and was the most similar source material to near-field environmental samples. These results suggest that petcoke is a major contributing source for the identified NPACs and that these compounds have the potential to be used as source indicators for future research in the AOSR.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Neve , Alberta , Monitoramento Ambiental , Nitrogênio , Campos de Petróleo e Gás
15.
Environ Toxicol Chem ; 37(5): 1309-1319, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29322545

RESUMO

The present study investigated oil dispersant toxicity to fish species typical of the cooler regions of Canada, together with less well-documented issues pertaining to oil dispersant monitoring. The oil dispersant toxicity of Corexit EC9500A was assessed for the freshwater fish species rainbow trout and the seawater species coho, chinook, and chum, with a final median lethal concentration (LC50) acute lethality range between 35.3 and 59.8 mg/L. The LC50 range was calculated using confirmed 0-h dispersant concentrations that were justified by fish mortality within the first 24 h of exposure and by variability of the dispersant indicator dioctyl sulfosuccinate (DOSS) used to monitor concentrations at later time points. To investigate DOSS as an oil dispersant indicator in the environment, microcosm systems were prepared containing Corexit EC9500A, Finasol OSR52, Slickgone NS, and Slickgone EW dispersants together with diluted bitumen. The DOSS indicator recovery was found to be stable for up to 13 d at 5 °C, 8 d at 10 °C, but significantly less than 8 d at ≥15 °C. After 3 d at temperatures ≥15 °C, the DOSS indicator recovery became less accurate and was dependent on multiple environmental factors including temperature, microbial activity, and aeration, with potential for loss of solvents and stabilizers. A final assessment determined DOSS to be a discrepant indicator for long-term monitoring of oil dispersant in seawater. Environ Toxicol Chem 2018;37:1309-1319. © 2018 SETAC.


Assuntos
Ácido Dioctil Sulfossuccínico/química , Hidrocarbonetos/química , Lipídeos/toxicidade , Petróleo/toxicidade , Tensoativos/toxicidade , Testes de Toxicidade Aguda , Aerobiose , Anaerobiose , Animais , Bactérias/efeitos dos fármacos , Canadá , Cátions , Água Doce , Oncorhynchus mykiss/fisiologia , Compostos Orgânicos/química , Poluição por Petróleo/análise , Água do Mar , Solventes , Temperatura , Poluentes Químicos da Água/toxicidade
16.
Environ Pollut ; 227: 271-279, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28477551

RESUMO

The toxicity of oil sands process-affected water (OSPW) has been primarily attributed to polar organic constituents, including naphthenic acid fraction components (NAFCs). Our objective was to assess the toxicity of NAFCs derived from fresh and aged OSPW, as well as commercial naphthenic acid (NA) mixtures. Exposures were conducted with three aquatic species: Hyalella azteca (freshwater amphipod), Vibrio fischeri (marine bacterium, Microtox® assay), and Lampsilis cardium (freshwater mussel larvae (glochidia)). Commercial NAs were more toxic than NAFCs, with differences of up to 30-, 4-, and 120-fold for H. azteca, V. fischeri, and L. cardium, respectively, demonstrating that commercial NAs are not reliable surrogates for assessing the toxicity of NAFCs. Differences in toxicity between species were striking for both commercial NAs and NAFCs. Overall, V. fischeri was the least sensitive and H. azteca was the most sensitive organism. Responses of V. fischeri and H. azteca to NAFC exposures were consistent (< 2-fold difference) regardless of source and age of OSPW; however, effects on L. cardium ranged 17-fold between NAFCs. NAFCs derived from fresh OSPW sources were similarly or less toxic to those from aged OSPW. Our results support the need to better characterize the complex mixtures associated with bitumen-influenced waters, both chemically and toxicologically.


Assuntos
Ácidos Carboxílicos/toxicidade , Invertebrados/efeitos dos fármacos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri , Anfípodes , Animais , Água Doce , Hidrocarbonetos , Campos de Petróleo e Gás , Poluição por Petróleo , Poluentes Químicos da Água/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-27901640

RESUMO

The advantage of using naphthenic acid (NA) mixtures for the determination of total NA lies in their chemical characteristics and identification of retention times distinct from isobaric interferences. However, the differing homolog profiles and unknown chemical structures of NA mixtures do not allow them to be considered a traceable reference material. The current study provides a new tool for the comparative assessment of different NA mixtures by direct reference to a single, well-defined and traceable compound, decanoic-d19 acid. The method employed an established liquid chromatography time-of-flight mass spectrometry (LC/QToF) procedure that was applicable both to the classic O2 NA species dominating commercial mixtures and additionally to the O4 species known to be present in acid extractable organics (AEOs) derived from oil sands process water (OSPW). Four different commercial NA mixtures and one OSPW-derived AEOs mixture were comparatively assessed. Results showed significant difference among Merichem Technical, Aldrich, Acros, and Kodak commercial NA mixtures with respect to "equivalent to decanoic-d19 acid" concentration ratios to nominal. Furthermore, different lot numbers of single commercial NA mixtures were found to be inconsistent with respect to their homolog content by percent response. Differences in the observed homolog content varied significantly, particularly at the lower (n = 9-14) and higher (n = 20-23) carbon number ranges. Results highlighted the problem between using NA mixtures from different sources and different lot numbers but offered a solution to the problem from a concentration perspective. It is anticipated that this tool may be utilized in review of historical data in addition to future studies, such as the study of OSPW derived acid extractable organics (AEOs) and fractions employed during toxicological studies.


Assuntos
Ácidos Carboxílicos/toxicidade , Resíduos Industriais , Campos de Petróleo e Gás , Poluentes Químicos da Água/toxicidade , Cromatografia Líquida , Humanos , Limite de Detecção , Espectrometria de Massas , Valores de Referência
18.
Environ Pollut ; 207: 59-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26342575

RESUMO

Unconventional oil production in Alberta's oil sands generates oil sands process-affected water (OSPW), which contains toxic constituents such as naphthenic acid fraction components (NAFCs). There have been few studies examining effects of NAFC exposure over long periods of early-life stage development in fish. Here we examined the effects of NAFCs extracted from OSPW to embryo-larval fathead minnow, exposed for 21 days. We compared the sensitivity of fathead minnow to walleye reared to 7 days post-hatch (18-20 days total). EC50s for hatch success, including deformities, and total survival were lower for walleye (10-11 mg/L) than fathead minnow (22-25 mg/L), with little post-hatch mortality observed in either species. NAFC exposure affected larval growth at concentrations below the EC50 in fathead minnow (total mass IC10 14-17 mg/L). These data contribute to an understanding of the developmental stages targeted by oil sands NAFCs, as well as their toxicity in a greater range of relevant taxa.


Assuntos
Ácidos Carboxílicos/química , Cyprinidae , Resíduos Industriais/efeitos adversos , Campos de Petróleo e Gás , Percas , Poluentes Químicos da Água/toxicidade , Alberta , Animais , Embrião não Mamífero/efeitos dos fármacos
19.
Aquat Toxicol ; 164: 108-17, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25957715

RESUMO

Naphthenic acids (NAs) are constituents of oil sands process-affected water (OSPW). These compounds can be both toxic and persistent and thus are a primary concern for the ultimate remediation of tailings ponds in northern Alberta's oil sands regions. Recent research has focused on the toxicity of NAs to the highly vulnerable early life-stages of fish. Here we examined fathead minnow embryonic survival, growth and deformities after exposure to extracted NA fraction components (NAFCs), from fresh and aged oil sands process-affected water (OSPW), as well as commercially available NA mixtures. Commercial NA mixtures were dominated by acyclic O2 species, while NAFCs from OSPW were dominated by bi- and tricyclic O2 species. Fathead minnow embryos less than 24h old were reared in tissue culture plates terminating at hatch. Both NAFC and commercial NA mixtures reduced hatch success, although NAFCs from OSPW were less toxic (EC50=5-12mg/L, nominal concentrations) than commercial NAs (2mg/L, nominal concentrations). The toxicities of NAFCs from aged and fresh OSPW were similar. Embryonic heart rates at 2 days post-fertilization (dpf) declined with increasing NAFC exposure, paralleling patterns of hatch success and rates of cardiovascular abnormalities (e.g., pericardial edemas) at hatch. Finfold deformities increased in exposures to commercial NA mixtures, not NAFCs. Thus, commercial NA mixtures are not appropriate surrogates for NAFC toxicity. Further work clarifying the mechanisms of action of NAFCs in OSPW, as well as comparisons with additional aged sources of OSPW, is merited.


Assuntos
Ácidos Carboxílicos/toxicidade , Cyprinidae/embriologia , Embrião não Mamífero/efeitos dos fármacos , Alberta , Animais , Anormalidades Cardiovasculares/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , Campos de Petróleo e Gás/química , Poluentes Químicos da Água/toxicidade
20.
J Chromatogr A ; 1334: 118-25, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24560353

RESUMO

A method for the rapid determination of 18 polycyclic aromatic hydrocarbons (PAHs) in soil has been established based on a simplified solvent extraction and GC/MS/MS operated in pseudo multiple reaction monitoring mode (PMRM), a technique where the two quadrupoles mass monitor the same m/z. The PMRM approach proved superior to the classic single quadrupole technique, with enhanced sensitivity, specificity, and significant reduction in time consuming sample clean-up procedures. Trace level PAHs could be readily confirmed by their retention times and characteristic ions. The limit of quantitation in soil was observed to be 20ng/g for 16 EPA-priority PAHs and 2 additional PAHs specific to Environment Canada. The developed method was linear over the calibration range 20-4000ng/g in soil, with observed coefficients of determination of >0.996. Individual PAH recoveries from fortified soil were in the range 58.1 to 110.1%, with a precision between 0.3 and 4.9% RSD. The ruggedness of the method was demonstrated by the success of an inter-lab proficiency test study organized by the Canadian Association for Laboratory Accreditation. The present method was found to be applicable as a rapid, routine screening for PAH contamination in soil, with significant savings in terms of preparation time and solvent usage.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Espectrometria de Massas em Tandem , Canadá , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Sensibilidade e Especificidade , Poluentes do Solo/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA