Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biogerontology ; 24(5): 813-827, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36738354

RESUMO

SARS-Cov-2 infection, which has caused the COVID-19 global pandemic, triggers cellular senescence. In this study, we investigate the role of the SARS-COV-2 spike protein (S-protein) in regulating the senescence of RPE cells. The results showed that administration or overexpression of S-protein in ARPE-19 decreased cell proliferation with cell cycle arrest at the G1 phase. S-protein increased SA-ß-Gal positive ARPE-19 cells with high expression of P53 and P21, senescence-associated inflammatory factors (e.g., IL-1ß, IL-6, IL-8, ICAM, and VEGF), and ROS. Elimination of ROS by N-acetyl cysteine (NAC) or knocking down p21 by siRNA diminished S-protein-induced ARPE cell senescence. Both administrated and overexpressed S-protein colocalize with the ER and upregulate ER-stress-associated BIP, CHOP, ATF3, and ATF6 expression. S-protein induced P65 protein nuclear translocation. Inhibition of NF-κB by bay-11-7082 reduced S-protein-mediated expression of senescence-associated factors. Moreover, the intravitreal injection of S-protein upregulates senescence-associated inflammatory factors in the zebrafish retina. In conclusions, the S-protein of SARS-Cov-2 induces cellular senescence of ARPE-19 cells in vitro and the expression of senescence-associated cytokines in zebrafish retina in vivo likely by activating ER stress, ROS, and NF-κb. These results may uncover a potential association between SARS-cov-2 infection and development of AMD.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra , SARS-CoV-2/metabolismo , Senescência Celular/fisiologia
2.
Nucleic Acids Res ; 51(3): 1443-1457, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36651297

RESUMO

Testicular nuclear receptor 4 (TR4) modulates the transcriptional activation of genes and plays important roles in many diseases. The regulation of TR4 on target genes involves direct interactions with DNA molecules via the DNA-binding domain (DBD) and recruitment of coregulators by the ligand-binding domain (LBD). However, their regulatory mechanisms are unclear. Here, we report high-resolution crystal structures of TR4DBD, TR4DBD-DNA complexes and the TR4LBD-JAZF1 complex. For DNA recognition, multiple factors come into play, and a specific mutual selectivity between TR4 and target genes is found. The coactivators SRC-1 and CREBBP can bind at the interface of TR4 originally occupied by the TR4 activation function region 2 (AF-2); however, JAZF1 suppresses the binding through a novel mechanism. JAZF1 binds to an unidentified surface of TR4 and stabilizes an α13 helix never reported in the nuclear receptor family. Moreover, the cancer-associated mutations affect the interactions and the transcriptional activation of TR4 in vitro and in vivo, respectively. Overall, our results highlight the crucial role of DNA recognition and a novel mechanism of how JAZF1 reinforces the autorepressed conformation and influences the transcriptional activation of TR4, laying out important structural bases for drug design for a variety of diseases, including diabetes and cancers.


Assuntos
Proteínas Correpressoras , Regulação da Expressão Gênica , Receptores de Esteroides , Humanos , Proteínas de Transporte/genética , Proteínas Correpressoras/metabolismo , DNA , Proteínas de Ligação a DNA/genética , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Ativação Transcricional
3.
Front Cell Neurosci ; 16: 868291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159397

RESUMO

Epigenetic modulations lead to changes in gene expression, including DNA methylation, histone modifications, and noncoding RNAs. In recent years, epigenetic modifications have been related to the pathogenesis of different types of cancer, cardiovascular disease, and other diseases. Emerging evidence indicates that DNA methylation could be associated with ischemic stroke (IS) and plays a role in pathological progression, but the underlying mechanism has not yet been fully understood. In this study, we used human methylation 850K BeadChip to analyze the differences in gene methylation status in the peripheral blood samples from two groups (3 IS patients vs. 3 healthy controls). According to their bioinformatics profiling, we found 278 genes with significantly different methylation levels. Seven genes with the most significant methylation modifications were validated in two expanded groups (100 IS patients vs. 100 healthy controls). The CAMTA1 gene had significantly different methylation changes in patients compared to the controls. To understand the CAMTA1 function in stroke, we generated CAMTA1 knockout in SH-SY5Y cells. RNA seq results in CAMTA1 knockout cells revealed the pathways and gene set enrichments involved in cellular proliferation and cell cycle. Furthermore, a series of experiments demonstrated that in the oxygen-glucose deprivation/re-oxygenation (OGD/R) model system, the expression of cyclin D1, an essential regulator of cell cycle progression, was increased in SH-SY5Y CAMTA1 KO cells. Increasing evidence demonstrated that ischemic stress could inappropriately raise cyclin D1 levels in mature neurons. However, the molecular signals leading to an increased cyclin D1 level are unclear. Our findings demonstrate for the first time that the CAMTA1 gene could regulate cyclin D1 expression and implicate their role in strokes.

4.
J Biol Chem ; 298(3): 101671, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120926

RESUMO

Human AlkB homolog 6, ALKBH6, plays key roles in nucleic acid damage repair and tumor therapy. However, no precise structural and functional information are available for this protein. In this study, we determined atomic resolution crystal structures of human holo-ALKBH6 and its complex with ligands. AlkB members bind nucleic acids by NRLs (nucleotide recognition lids, also called Flips), which can recognize DNA/RNA and flip methylated lesions. We found that ALKBH6 has unusual Flip1 and Flip2 domains, distinct from other AlkB family members both in sequence and conformation. Moreover, we show that its unique Flip3 domain has multiple unreported functions, such as discriminating against double-stranded nucleic acids, blocking the active center, binding other proteins, and in suppressing tumor growth. Structural analyses and substrate screening reveal how ALKBH6 discriminates between different types of nucleic acids and may also function as a nucleic acid demethylase. Structure-based interacting partner screening not only uncovered an unidentified interaction of transcription repressor ZMYND11 and ALKBH6 in tumor suppression but also revealed cross talk between histone modification and nucleic acid modification in epigenetic regulation. Taken together, these results shed light on the molecular mechanism underlying ALKBH6-associated nucleic acid damage repair and tumor therapy.


Assuntos
Enzimas AlkB , Proteínas de Ciclo Celular , Proteínas Correpressoras , Proteínas de Ligação a DNA , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Correpressoras/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas/metabolismo , RNA/metabolismo
5.
Aging (Albany NY) ; 13(17): 21547-21570, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34495872

RESUMO

The senescence of retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD), a leading cause of blindness in the world. HSP90 is a predominant chaperone that regulates cellular homeostasis under divergent physio-pathological conditions including senescence. However, the role of HSP90 in senescent RPE cells still remains unclear. Here, we reported that HSP90 acts as a senomorphic target of senescent RPE cells in vitro. Using H2O2-induced senescent ARPE-19 cells and replicative senescent primary RPE cells from rhesus monkey, we found that HSP90 upregulates the expression of IKKα, and HIF1α in senescent ARPE-19 cells and subsequently controls the induction of distinct senescence-associated inflammatory factors. Senescent ARPE-19 cells are more resistant to the cytotoxic HSP90 inhibitor IPI504 (IC50 = 36.78 µM) when compared to normal ARPE-19 cells (IC50 = 6.16 µM). Administration of IPI504 at 0.5-5 µM can significantly inhibit the induction of IL-1ß, IL-6, IL-8, MCP-1 and VEGFA in senescent ARPE-19 and the senescence-mediated migration of retinal capillary endothelial cells in vitro. In addition, we found that inhibition of HSP90 by IPI504 reduces SA-ß-Gal's protein expression and enzyme activity in a dose-dependent manner. HSP90 interacts with and regulates SA-ß-Gal protein stabilization in senescent ARPE-19 cells. Taken together, these results suggest that HSP90 regulates the SASP and SA-ß-Gal activity in senescent RPE cells through associating with distinctive mechanism including NF-κB, HIF1α and lysosomal SA-ß-Gal. HSP90 inhibitors (e.g. IPI504) could be a promising senomorphic drug candidate for AMD intervention.


Assuntos
Benzoquinonas/administração & dosagem , Senescência Celular , Proteínas de Choque Térmico HSP90/metabolismo , Lactamas Macrocíclicas/administração & dosagem , Epitélio Pigmentado da Retina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Citocininas/metabolismo , Células Epiteliais/metabolismo , Humanos , Peróxido de Hidrogênio , Macaca mulatta , Degeneração Macular/etiologia , Degeneração Macular/patologia , Retina/patologia , Epitélio Pigmentado da Retina/patologia , Senoterapia
6.
J Mol Cell Biol ; 12(4): 291-304, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31237951

RESUMO

The endocrine regulatory roles of the hypothalamic-pituitary-adrenocortical axis on anxiety-like behavior and metabolic status have been found throughout animal taxa. However, the precise effects of the balancing adrenal corticosteroid biosynthesis under the influence of adrenocorticotrophic hormone (ACTH), a pro-opiomelanocortin (POMC)-derived peptide, on animal energy expenditure and somatic growth remain unknown. POMC has also been identified as one of the candidate loci for polycystic ovary syndrome, which features hyperandrogenism and some prevalence of obesity in patients. Here we show that zebrafish lacking functional POMCa exhibit similar phenotypes of stress response and body weight gain but not obesity as observed in mammalian models. In contrast with the impaired anorexigenic signaling cascade of melanocyte-stimulating hormones and leptin, which are responsible for their obesity-prone weight gain observed in various pomc mutant mammals, analyses with our pomca mutant series indicate that ACTH is the key regulator for the phenotype with enhanced somatic growth without obesity in pomca-deficient zebrafish. Hypocortisolism associated with hyperandrogenism has been observed in the pomca-deficient zebrafish, with enhanced activation of mammalian target of rapamycin complex 1; reutilization of amino acids and fatty acid ß-oxidation are observed in the muscle tissue of the pomca-deficient fish. After reducing hyperandrogenism by crossing our pomca mutant fish with a cyp17a1-deficient background, the phenotype of enhanced somatic growth in pomca-deficient fish was no longer observed. Thus, our work also demonstrated that the role of POMCa in stress response seems to be conserved in vertebrates, whereas its effect on adipostasis is unique to teleosts.


Assuntos
Adiposidade , Hiperandrogenismo/metabolismo , Pró-Opiomelanocortina/deficiência , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Ansiedade/metabolismo , Sequência de Bases , Comportamento Animal , AMP Cíclico/metabolismo , Escuridão , Ácidos Graxos/metabolismo , Hidrocortisona/metabolismo , Larva/metabolismo , Lipídeos/química , Melanossomas/metabolismo , Músculos/metabolismo , Mutação/genética , Obesidade/genética , Oxirredução , Consumo de Oxigênio , Pró-Opiomelanocortina/metabolismo , Biossíntese de Proteínas , Receptor Tipo 2 de Melanocortina/metabolismo , Transdução de Sinais , Testosterona/metabolismo
7.
Biol Reprod ; 101(4): 760-770, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31322169

RESUMO

In recent studies, luteinizing hormone (LH) was reported to play important roles in oocyte maturation. However, the mechanism by which LH signaling, especially regarding the steroidogenesis process, affects oocyte maturation has not been clarified. In this study, zebrafish models with a functional deficiency in luteinizing hormone beta (Lhb) or steroidogenic acute regulatory protein (Star), an enzyme that promotes the transport of cholesterol into the inner mitochondrial membrane for maturation-induced hormone (MIH) production, were generated using transcription activator-like effector nucleases (TALENs). Similar phenotypes of the maturation-arrested oocytes in both female mutants have been observed. The levels of MIH in the oocytes of the female mutants were clearly decreased in both the lhb and star knockout zebrafish. The expression of star was dramatically down-regulated in the lhb mutant follicles and was clearly promoted by forskolin and hCG in vitro. Furthermore, treatment with the MIH precursors, pregnenolone or progesterone, as well as with MIH itself rescued the maturation-arrested oocyte phenotypes in both lhb and star mutants. The plasma levels of other steroids, including testosterone, estradiol, and cortisol, were not affected in the lhb mutants, while the levels of gonad hormones testosterone and estradiol were significantly increased in the star mutants. The cortisol levels were decreased in the star mutants. Collectively, our results confirm that LH plays important roles in the initiation of MIH synthesis from cholesterol and maintains oocyte maturation in zebrafish, as well as provide evidence that Star might act downstream of LH signaling in steroidogenesis.


Assuntos
Hormônios Esteroides Gonadais/biossíntese , Hormônio Luteinizante/fisiologia , Oogênese/genética , Ovário/metabolismo , Fosfoproteínas/fisiologia , Animais , Animais Geneticamente Modificados , Feminino , Técnicas de Silenciamento de Genes , Hormônios Esteroides Gonadais/farmacologia , Hormônio Luteinizante/genética , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Ovário/efeitos dos fármacos , Fosfoproteínas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
8.
Endocrinology ; 159(10): 3549-3562, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202919

RESUMO

Cytochrome P450 (Cyp)17A1 has both 17α-hydroxylase and 17,20-lyase activities, which are involved in the steroidogenic pathway that produces androgens and estrogens. Previously, a phenotype of all-male cyp17a1-deficient zebrafish generated by transcription activatorlike effector nuclease has been reported. In the current study, the mechanisms relating to Cyp17a1 that are involved in the development of sexual traits, especially gonadal differentiation and testicular development, were characterized. We found that the cyp17a1-deficient fish at 3 months postfertilization (mpf) were all fertile males with normal testis and spermatogenesis but compromised male-typical mating behaviors and secondary sex characters (SSCs), including breeding tubercles, body pigmentation, and anal fin coloration. These results demonstrate that spermatogenesis and testicular development are not as susceptible to androgen deficiency compared with the formation of male-typical SSCs and mating behaviors in zebrafish. The differentiation of the juvenile ovary into the mature ovary failed during the critical sexual differentiation stage. This all-male phenotype of the cyp17a1-deficient fish could be restored with testosterone or estradiol treatment. For testicular development in cyp17a1-deficient fish, a gradually increasing number of spermatozoa and testis hypertrophy from 3 to 6 mpf were observed, accompanied by constitutively upregulated pituitary gonadotropin FSH subunit ß (fshß). The hypertrophic testis and enhanced spermatogenesis in the cyp17a1-deficient fish at 6 mpf could be effectively rescued by fshß depletion. These results confirm that adequate estrogen is essential for maintaining ovarian differentiation, and they provide new insight into the role of FSHß in male testicular development and spermatogenesis.


Assuntos
Diferenciação Sexual/genética , Desenvolvimento Sexual/genética , Esteroide 17-alfa-Hidroxilase/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Estrogênios/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Masculino , Ovário/metabolismo , Fenótipo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Fatores de Tempo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA