Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 12(24): 22109-22129, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38098217

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Microambiente Tumoral
2.
Front Oncol ; 13: 1198118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324014

RESUMO

Background: Afatinib is mainly used to treat advanced non-small cell lung cancer, but its therapeutic effect on hepatocellular carcinoma is still unclear. Methods: Over 800 drugs were screened by CCK8 technology and afatinib was found to have a significant inhibitory effect on liver cancer cells. The expression of PDL1 in tumor cells treated with drugs were detected by qRT-PCR and Weston Blot experiments. The effects of afatinib on the growth, migration and invasion of HCC cells were evaluated using wound healing, Transwell, and cell cloning assays. The in vivo effects of afatinib in combination with anti-PD1 were evaluated in C57/BL6J mice with subcutaneous tumorigenesis. Bioinformatics analysis was performed to explore the specific mechanism of afatinib's inhibition of ERBB2 in improving the expression level of PD-L1, which was subsequently verified through experiments. Results: Afatinib was found to have a significant inhibitory effect on liver cancer cells, as confirmed by in vitro experiments, which demonstrated that it could significantly suppress the growth, invasion and migration of HCC cells. qRT PCR and Weston Blot experiments also showed that Afatinib can enhance the expression of PD-L1 in tumor cells. In addition, in vitro experiments confirmed that afatinib can significantly enhance the immunotherapeutic effect of hepatocellular carcinoma. Afatinib's ability to increase PD-L1 expression is mediated by STAT3 activation following its action on HCC cells. Conclusion: Afatinib enhances PD-L1 expression in tumor cells through the STAT3/PD-L1 pathway. The combination of afatinib and anti-PD1 treatment significantly increases the immunotherapeutic effect of HCC.

3.
Stem Cell Rev Rep ; 19(6): 1965-1980, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37243829

RESUMO

BACKGROUND: Hepatic ischemia and reperfusion (IR) injury, characterized by reactive oxygen species (ROS) production and immune disorders, leads to exogenous antigen-independent local inflammation and hepatocellular death. Mesenchymal stem cells (MSCs) have been shown to be immunomodulatory, antioxidative and contribute to liver regeneration in fulminant hepatic failure. We aimed to investigate the underlying mechanisms by which MSCs protect against liver IR injury in a mouse model. METHODS: MSCs suspension was injected 30 min prior to hepatic warm IR. Primary kupffer cells (KCs) were isolated. Hepatic injury, inflammatory responses, innate immunity, KCs phenotypic polarization and mitochondrial dynamics were evaluated with or without KCs Drp-1 overexpression RESULTS: MSCs markedly ameliorated liver injury and attenuated inflammatory responses and innate immunity after liver IR injury. MSCs significantly restrained M1 phenotypic polarization but boosted M2 polarization of KCs extracted from ischemic liver, as demonstrated by lowered transcript levels of iNOS and IL-1ß but raised transcript levels of Mrc-1 and Arg-1 combined with p-STAT6 up-regulation and p-STAT1 down-regulation. Moreover, MSCs inhibited KCs mitochondrial fission, as evidenced by decreased Drp1 and Dnm2 levels. We overexpressed Drp-1 in KCs which promote mitochondrial fission during IR injury. the regulation of MSCs towards KCs M1/M2 polarization was abrogated by Drp-1 overexpression after IR injury. Ultimately, in vivo Drp-1 overexpression in KCs hampered the therapeutic effects of MSCs against hepatic IR injury CONCLUSIONS: We revealed that MSCs facilitated M1-M2 phenotypic polarization through inhibiting Drp-1 dependent mitochondrial fission and further attenuated liver IR injury. These results add a new insight into regulating mechanisms of mitochondrial dynamics during hepatic IR injury and may offer novel opportunities for developing therapeutic targets to combat hepatic IR injury.


Assuntos
Hepatopatias , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Camundongos , Células de Kupffer , Dinâmica Mitocondrial , Traumatismo por Reperfusão/genética
5.
Front Cell Dev Biol ; 9: 680344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621736

RESUMO

Liver fibrosis is mediated by myofibroblasts, a specialized cell type involved in wound healing and extracellular matrix production. Hepatic stellate cells (HSC) are the major source of myofibroblasts in the fibrotic livers. In the present study we investigated the involvement of CXXC-type zinc-finger protein 5 (CXXC5) in HSC activation and the underlying mechanism. Down-regulation of CXXC5 was observed in activated HSCs compared to quiescent HSCs both in vivo and in vitro. In accordance, over-expression of CXXC5 suppressed HSC activation. RNA-seq analysis revealed that CXXC5 influenced multiple signaling pathways to regulate HSC activation. The proto-oncogene MYCL1 was identified as a novel target for CXXC5. CXXC5 bound to the proximal MYCL1 promoter to repress MYCL1 transcription in quiescent HSCs. Loss of CXXC5 expression during HSC activation led to the removal of CpG methylation and acquisition of acetylated histone H3K9/H3K27 on the MYCL1 promoter resulting in MYCL1 trans-activation. Finally, MYCL1 knockdown attenuated HSC activation whereas MYCL1 over-expression partially relieved the blockade of HSC activation by CXXC5. In conclusion, our data unveil a novel transcriptional mechanism contributing to HSC activation and liver fibrosis.

6.
Oxid Med Cell Longev ; 2021: 6662156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986918

RESUMO

Ischemia-reperfusion injury (IRI) is a common complication in liver surgeries. It is a focus to discover effective treatments to reduce ischemia-reperfusion injury. Previous studies show that oxidative stress and inflammation response contribute to the liver damage during IRI. SS-31 is an innovated mitochondrial-targeted antioxidant peptide shown to scavenge reactive oxygen species and decrease oxidative stress, but the protective effects of SS-31 against hepatic IRI are not well understood. The aim of our study is to investigate whether SS-31 could protect the liver from damages induced by IRI and understand the protective mechanism. The results showed that SS-31 treatment can significantly attenuate liver injury during IRI, proved by HE staining, serum ALT/AST, and TUNEL staining which can assess the degree of liver damage. Meanwhile, we find that oxidative stress and inflammation were significantly suppressed after SS-31 administration. Furthermore, the mechanism revealed that SS-31 can directly decrease ROS production and regulate STAT1/STAT3 signaling in macrophages, thus inhibiting macrophage M1 polarization. The proinflammation cytokines are then significantly reduced, which suppress inflammation response in the liver. Taken together, our study discovered that SS-31 can regulate macrophage polarization through ROS scavenging and STAT1/STAT3 signaling to ameliorate liver injury; the protective effects against hepatic IRI suggest that SS-31 may be an appropriate treatment for liver IRI in the clinic.


Assuntos
Fígado/patologia , Macrófagos/metabolismo , Oligopeptídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Traumatismo por Reperfusão
7.
Cell Biosci ; 10(1): 137, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33292517

RESUMO

BACKGROUND: Macrophages that accumulate in atherosclerotic plaques contribute to progression of the lesions to more advanced and complex plaques. Although iron deposition was found in human atherosclerotic plaques, clinical and pre-clinical studies showed controversial results. Several epidemiological studies did not show the positive correlation between a systemic iron status and an incidence of cardiovascular diseases, suggesting that the iron involvement occurs locally, rather than systemically. RESULTS: To determine the direct in vivo effect of iron accumulation in macrophages on the progression of atherosclerosis, we generated Apoe-/- mice with a macrophage-specific ferroportin (Fpn1) deficiency (Apoe-/-Fpn1LysM/LysM). Fpn1 deficiency in macrophages dramatically accelerated the progression of atherosclerosis in mice. Pathophysiological evidence showed elevated levels of reactive oxygen species, aggravated systemic inflammation, and altered plaque-lipid composition. Moreover, Fpn1 deficiency in macrophages significantly inhibited the expression of ABC transporters (ABCA1 and ABCG1) by decreasing the expression of the transcription factor LXRα, which reduced cholesterol efflux and therefore promoted foam cell formation and enhanced plaque formation. Iron chelation relieved the symptoms moderately in vivo, but drastically ex vivo. CONCLUSIONS: Macrophage iron content in plaques is a critical factor in progression of atherosclerosis. The interaction of iron and lipid metabolism takes place in macrophage-rich atherosclerotic plaques. And we also suggest that altering intracellular iron levels in macrophages by systemic iron chelation or dietary iron restriction may be a potential supplementary strategy to limit or even regress the progression of atherosclerosis.

8.
J Exp Clin Cancer Res ; 38(1): 489, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831037

RESUMO

BACKGROUND: Ischemia reperfusion injury (IRI) has been shown to increase the risk of tumor recurrence after liver surgery. Also, nonalcoholic fatty liver disease (NAFLD) is associated with increased HCC recurrence. ALOX12-12-HETE pathway is activated both in liver IRI and NASH. Also, ALOX12-12-HETE has been shown to mediate tumorigenesis and progression. Therefore, our study aims to investigate whether the ALOX12-12-HETE-GPR31 pathway involved in IRI induced HCC recurrence in NAFLD. METHODS: HCC mouse model was used to mimic the HCC recurrence in NAFLD. Western Blot, qPCR, Elisa and Immunofluorescence analysis were conducted to evaluate the changes of multiple signaling pathways during HCC recurrence, including ALOX12-12-HETE axis, EMT, MMPs and PI3K/AKT/NF-κB signaling pathway. We also measured the expression and functional changes of GPR31 by siRNA. RESULTS: ALOX12-12-HETE pathway was activated in liver IRI and its activation was further enhanced in NAFLD, which induced more severe HCC recurrence in fatty livers than normal livers. Inhibition of ALOX12-12-HETE by ML355 reduced the HCC recurrence in fatty livers. In vitro studies showed that 12-HETE increased the expression of GPR31 and induced epithelial-mesenchymal transition (EMT) and matrix metalloprotein (MMPs) by activating PI3K/AKT/NF-κB pathway. Furthermore, knockdown of GPR31 in cancer cells inhibited the HCC recurrence in NAFLD. CONCLUSIONS: ALOX12-12-HETE-GPR31 played an important role in HCC recurrence and might be a potential therapeutic target to reduce HCC recurrence after surgery in fatty livers.


Assuntos
Neoplasias Hepáticas/metabolismo , Recidiva Local de Neoplasia/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Traumatismo por Reperfusão/complicações , Transdução de Sinais , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animais , Araquidonato 12-Lipoxigenase/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
9.
Phytother Res ; 33(9): 2347-2359, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31273855

RESUMO

As yet, there was no effective pharmacological therapy approved for non-alcoholic fatty liver disease (NAFLD). Here, we aimed to evaluate the therapeutic potential of puerarin against NAFLD and explored the underlying mechanisms. C57BL/6J mice were fed with a high-fat high-sucrose (HFHS) diet with or without puerarin coadministration intragastrically. The levels of hepatocellular injury, steatosis, fibrosis, and mitochondrial and metabolism alteration were detected. First, puerarin ameliorated histopathologic abnormalities due to HFHS. We observed a marked increase in hepatic lipid content, inflammation, and fibrosis level, which were attenuated by puerarin. Possible mechanisms were related to puerarin-mediated activation of PI3K/AKT pathway and further improvement in fatty acid metabolism. Puerarin restored the NAD+ content and beneficially affected the hepatic mitochondrial function, which attenuated HFHS-induced steatosis and metabolic disturbances. Finally, hepatic PARP-1 was activated due to excessive fat intake. Puerarin attenuated the PARP-1 expression in HFHS-fed mice, and PJ34, the PARP inhibitor, could mimic these protections of puerarin. However, pharmacological inhibition of PI3K disabled the protection of puerarin or PJ34 toward NAD+ refilling and mitochondrial homeostasis. In conclusion, our findings indicated that puerarin could be a promising and practical therapeutic strategy in NAFLD through modulating PARP-1/PI3K/AKT signaling pathway and further facilitating mitochondrial function.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Isoflavonas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sacarose/efeitos adversos , Vasodilatadores/uso terapêutico , Animais , Humanos , Isoflavonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Vasodilatadores/farmacologia
10.
Oxid Med Cell Longev ; 2019: 2301903, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214277

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is more sensitive to ischemia and reperfusion injury (IRI), while there are no effective methods to alleviate IRI. Necroptosis, also known as "programmed necrosis," incorporates features of necrosis and apoptosis. However, the role of necroptosis in IRI of the fatty liver remains largely unexplored. In the present study, we aimed to assess whether necroptosis was activated in the fatty liver and whether such activation accelerated IRI in the fatty liver. In this study, we found that the liver IRI was enhanced in HFD-fed mice with more release of TNFα. TNFα and supernatant of macrophages could induce necroptosis of hepatocytes in vitro. Necroptosis was activated in NAFLD, leading to more severe IRI, and such necroptosis could be inhibited by TN3-19.12, the neutralizing monoclonal antibody against TNFα. Pretreatment with Nec-1 and GSK'872, two inhibitors of necroptosis, significantly reduced the liver IRI and ROS production in HFD-fed mice. Moreover, the inhibition of necroptosis could decrease ROS production of hepatocytes in vitro. Inflammatory response was activated during IRI, and necroptosis inhibitors could suppress signaling pathways of inflammation and the soakage of inflammation cells. In conclusion, TNFα-induced necroptosis played an important role during IRI in the fatty liver. Our findings demonstrated that necroptosis might be a potential target to reduce the fatty liver-associated IRI.


Assuntos
Hepatócitos/fisiologia , Inflamação/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Traumatismo por Reperfusão/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Apoptose , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Espécies Reativas de Oxigênio/metabolismo
11.
J Exp Clin Cancer Res ; 38(1): 228, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142342

RESUMO

BACKGROUND: Tumor microenvironment (TME) plays a very important role in cancer progression. The mesenchymal stem cells (MSC), a major compartment of TME, have been shown to promote hepatocellular carcinoma (HCC) progression and metastasis. As hypoxia is a common feature of TME, it is essential to investigate the effects of hypoxia on MSC during HCC progression. METHODS: The effects of hypoxia on MSC mediated cell proliferation and HCC progression were measured by cell counting kit-8 (CCK-8) assay, Edu incorporation assay and xenograft model. The role of cyclooxygenase 2 (COX2) during this process was evaluated via lentivirus mediated COX2 knockdown in MSC. We also assessed the levels and localization of yes-associated protein (YAP) in HCC cells by immunofluorescence, western blot and real-time PCR, in order to detect the alterations of Hippo pathway. The changes in lipogenesis was examined by triacylglycerol (TG) levels, BODIPY staining of neutral lipid, and lipogenic enzyme levels. The alterations in AKT/mTOR/SREBP1 pathway were measured by western blot. In addition, to evaluate the role of prostaglandin E receptor 4 (EP4) in MSC mediated cell proliferation under hypoxia, we manipulated the levels of EP4 in HCC cells via small interfering RNA (siRNA), EP4 antagonist or agonist. RESULTS: We found that MSC under hypoxia condition (hypo-MSC) could promote proliferation of HCC cell lines and tumor growth in xenograft model. Hypoxia increased COX2 expression in MSC and promoted the secretion of prostaglandin E2 (PGE2), which then activated YAP in HCC cells and led to increased cell proliferation. Meanwhile, YAP activation enhanced lipogenesis in HCC cell lines by upregulating AKT/mTOR/SREBP1 pathway. Knockdown or overexpression of YAP significantly decreased or increased lipogenesis. Finally, EP4 was found to mediate the effects of hypo-MSC on YAP activation and lipogenesis of HCC cells. CONCLUSIONS: Hypo-MSC can promote HCC progression by activating YAP and the YAP mediated lipogenesis through COX2/PGE2/EP4 axis. The communication between MSC and cancer cells may be a potential therapeutic target for inhibiting cancer growth.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hipóxia/metabolismo , Lipogênese , Neoplasias Hepáticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Reprogramação Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Hipóxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Proc Natl Acad Sci U S A ; 116(20): 9871-9876, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31040213

RESUMO

The importance of the role of iron regulatory proteins (IRPs) in mitochondrial iron homeostasis and function has been raised. To understand how an IRP affects mitochondrial function, we used globally Irp2-depleted mouse embryonic fibroblasts (MEFs) and found that Irp2 ablation significantly induced the expression of both hypoxia-inducible factor subunits, Hif1α and Hif2α. The increase of Hif1α up-regulated its targeted genes, enhancing glycolysis, and the increase of Hif2α down-regulated the expression of iron-sulfur cluster (Fe-S) biogenesis-related and electron transport chain (ETC)-related genes, weakening mitochondrial respiration. Inhibition of Hif1α by genetic knockdown or a specific inhibitor prevented Hif1α-targeted gene expression, leading to decreased aerobic glycolysis. Inhibition of Hif2α by genetic knockdown or selective disruption of the heterodimerization of Hif2α and Hif1ß restored the mitochondrial ETC and coupled oxidative phosphorylation (OXPHOS) by enhancing Fe-S biogenesis and increasing ETC-related gene expression. Our results indicate that Irp2 modulates the metabolic switch from aerobic glycolysis to OXPHOS that is mediated by Hif1α and Hif2α in MEFs.


Assuntos
Glicólise , Proteína 2 Reguladora do Ferro/metabolismo , Fosforilação Oxidativa , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Biogênese de Organelas
13.
J Exp Clin Cancer Res ; 37(1): 324, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591064

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a global challenge due to its high morbidity and mortality rates as well as poor response to treatment. The communication between tumor-derived elements and stroma plays a critical role in facilitating cancer progression of HCC. Exosomes are small extracellular vesicles (EVs) that are released from the cells upon fusion of multivesicular bodies with the plasma membrane. There is emerging evidence indicating that exosomes play a central role in cell-to-cell communication. Much attention has been paid to exosomes since they are found to transport bioactive proteins, messenger RNA (mRNAs) and microRNA (miRNAs) that can be transferred in active form to adjacent cells or to distant organs. However, the mechanisms underlying such cancer progression remain largely unexplored. METHODS: Exosomes were isolated by differential ultracentrifugation from conditioned medium of HCC cells and identified by electron microscopy and Western blotting analysis. Hepatic stellate cells (HSCs) were treated with different concentrations of exosomes, and the activation of HSCs was analyzed by Western blotting analysis, wound healing, migration assay, Edu assay, CCK-8 assay and flow cytometry. Moreover, the different miRNA levels of exosomes were tested by real-time quantitative PCR (RT-PCR). The angiogenic ability of activated HSCs was analyzed by qRT-PCR, CCK-8 assay and tube formation assay. In addition, the abnormal lipid metabolism of activated HSCs was analyzed by Western blotting analysis and Oil Red staining. Finally, the relationship between serum exosomal miRNA-21 and prognosis of HCC patients was evaluated. RESULTS: We showed that HCC cells exhibited a great capacity to convert normal HSCs to cancer-associated fibroblasts (CAFs). Moreover, our data revealed that HCC cells secreted exosomal miRNA-21 that directly targeted PTEN, leading to activation of PDK1/AKT signaling in HSCs. Activated CAFs further promoted cancer progression by secreting angiogenic cytokines, including VEGF, MMP2, MMP9, bFGF and TGF-ß. Clinical data indicated that high level of serum exosomal miRNA-21 was correlated with greater activation of CAFs and higher vessel density in HCC patients. CONCLUSIONS: Intercellular crosstalk between tumor cells and HSCs was mediated by tumor-derived exosomes that controlled progression of HCC. Our findings provided potential targets for prevention and treatment of live cancer.


Assuntos
Carcinoma Hepatocelular/genética , Fibroblastos/patologia , Células Estreladas do Fígado/patologia , Hepatócitos/patologia , Neoplasias Hepáticas/genética , MicroRNAs/genética , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Exossomos , Fibroblastos/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais
14.
Sci Rep ; 8(1): 5118, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572489

RESUMO

Iron is essential for growth and proliferation of mammalian cells. The maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs) through binding to the cognate iron-responsive elements in target mRNAs and thereby regulating the expression of target genes. Irp1 or Irp2-null mutation is known to reduce the cellular iron level by decreasing transferrin receptor 1 and increasing ferritin. Here, we report that Irp1 or Irp2-null mutation also causes downregulation of frataxin and IscU, two of the core components in the iron-sulfur cluster biogenesis machinery. Interestingly, while the activities of some of iron-sulfur cluster-containing enzymes including mitochondrial aconitase and cytosolic xanthine oxidase were not affected by the mutations, the activities of respiratory chain complexes were drastically diminished resulting in mitochondrial dysfunction. Overexpression of human ISCU and frataxin in Irp1 or Irp2-null cells was able to rescue the defects in iron-sulfur cluster biogenesis and mitochondrial quality. Our results strongly suggest that iron regulatory proteins regulate the part of iron sulfur cluster biogenesis tailored specifically for mitochondrial electron transport chain complexes.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteína 1 Reguladora do Ferro/deficiência , Proteína 2 Reguladora do Ferro/deficiência , Proteínas de Ligação ao Ferro/biossíntese , Animais , Embrião de Mamíferos/patologia , Ferritinas/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Mutação , Frataxina
15.
Molecules ; 21(3): 325, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26978329

RESUMO

Previous studies have demonstrated that activation of Akt may alleviate early brain injury (EBI) following subarachnoid hemorrhage (SAH). This study is undertaken to determine whether iron metabolism is involved in the beneficial effect of Akt activation after SAH. Therefore, we used a novel molecule, SC79, to activate Akt in an experimental Sprague-Dawley rat model of SAH. Rats were randomly divided into four groups as follows: sham, SAH, SAH + vehicle, SAH + SC79. The results confirmed that SC79 effectively enhanced the defense against oxidative stress and alleviated EBI in the temporal lobe after SAH. Interestingly, we found that phosphorylation of Akt by SC79 reduced cell surface transferrin receptor-mediated iron uptake and promoted ferroportin-mediated iron transport after SAH. As a result, SC79 administration diminished the iron content in the brain tissue. Moreover, the impaired Fe-S cluster biogenesis was recovered and loss of the activities of the Fe-S cluster-containing enzymes were regained, indicating that injured mitochondrial functions are restored to healthy levels. These findings suggest that disrupted iron homeostasis could contribute to EBI and Akt activation may regulate iron metabolism to relieve iron toxicity, further protecting neurons from EBI after SAH.


Assuntos
Acetatos/farmacologia , Benzopiranos/farmacologia , Ferro/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Animais , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Proteínas Ferro-Enxofre/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos , Ratos Sprague-Dawley
16.
Molecules ; 20(12): 21287-97, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26633327

RESUMO

Foam cell formation as a result of imbalance of modified cholesterol influx and efflux by macrophages is a key to the occurrence and development of atherosclerosis. Oxidative stress is thought to be involved in the pathogenesis of atherosclerosis. SS-31 is a member of the Szeto-Schiller (SS) peptides shown to specifically target the inner mitochondrial membrane to scavenge reactive oxygen species. In this study, we investigated whether SS-31 may provide protective effect on macrophage from foam cell formation in RAW264.7 cells. The results showed that SS-31 inhibited oxidized low-density lipoproteins (ox-LDL)-induced foam cell formation and cholesterol accumulation, demonstrated by intracellular oil red O staining and measurement of cholesterol content. The mechanism was revealed that SS-31 did not only significantly attenuated ox-LDL-induced generation of reactive oxygen species (ROS) and increased the activities of superoxide dismutases, but also dose-dependently inhibited the expression of CD36 and LOX-1, two scavenger receptors of ox-LDL, while the expression of ATP-binding cassette A1 and G1, playing a pivotal role in cholesterol efflux, was not affected. As a result, SS-31 decreased pro-inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha, suggesting the prevention of inflammatory responses. In conclusion, our results demonstrate that SS-31 provides a beneficial effect on macrophages from foam cell formation, likely, through both ROS scavenging and inhibition of cholesterol influx. Therefore, SS-31 may potentially be of therapeutic relevance in prevention of human atherogenesis.


Assuntos
Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oligopeptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Transporte Biológico , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA