Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136207

RESUMO

Mitochondrial biogenesis and fusion are essential for maintaining healthy mitochondria and ATP production. High-intensity interval training (HIIT) can enhance mitochondrial function in mouse hippocampi, but its underlying mechanism is not completely understood. Lactate generated during HIIT may mediate the beneficial effects of HIIT on neuroplasticity by activating the lactate receptor GPR81. Furthermore, growing evidence shows that lactate contributes to mitochondrial function. Given that mitochondrial function is crucial for cerebral physiological processes, the current study aimed to determine the mechanism of HIIT in hippocampal mitochondrial function. In vivo, GPR81 was knocked down in the hippocampi of mice via the injection of adeno-associated virus (AAV) vectors. The GPR81-knockdown mice were subjected to HIIT. The results demonstrated that HIIT increased mitochondria numbers, ATP production, and oxidative phosphorylation (OXPHOS) in the hippocampi of mice. In addition, HIIT induced mitochondrial biogenesis, fusion, synaptic plasticity, and ERK1/2 phosphorylation but not in GPR81-knockdown mice. In vitro, Neuro-2A cells were treated with L-lactate, a GPR81 agonist, and an ERK1/2 inhibitor. The results showed that both L-lactate and the GPR81 agonist increased mitochondrial biogenesis, fusion, ATP levels, OXPHOS, mitochondrial membrane potential, and synaptic plasticity. However, the inhibition of ERK1/2 phosphorylation blunted L-lactate or the GPR81 agonist-induced promotion of mitochondrial function and synaptic plasticity. In conclusion, our findings suggest that lactate mediates HIIT-induced promotion of mitochondrial function through the GPR81-ERK1/2 pathway.

2.
J Anim Sci Biotechnol ; 12(1): 54, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879267

RESUMO

BACKGROUND: Sows are frequently subjected to various stresses during late gestation and lactation, which trigger inflammatory response and metabolic disorders. Dietary fiber can influence animal health by modulating gut microbiota and their by-products, with the effects depending upon the source of the dietary fiber. This study aimed to evaluate the impacts of different fiber sources on body condition, serum biochemical parameters, inflammatory responses and fecal microbiota in sows from late gestation to lactation. METHODS: Forty-five multiparous sows (Yorkshire × Landrace; 3-6 parity) were assigned to 1 of 3 dietary treatments from d 85 of gestation to the end of lactation (d 21 post-farrowing): a control diet (CON, a corn-soybean meal diet), a sugar beet pulp diet (SBP, 20% SBP during gestation and 10% SBP during lactation), and a wheat bran diet (WB, 30% WB during gestation and 15% WB during lactation). RESULTS: Compared with CON, supplementation of SBP decreased (P < 0.05) lactation BW loss, reduced (P < 0.05) serum concentration of total cholesterol, non-esterified fatty acids, interleukin-6 and tumor necrosis factor-α, and increased (P < 0.05) fecal water content on d 110 of gestation and d 21 of lactation, while supplementation of WB reduced (P < 0.05) serum concentration of total cholesterol on d 110 of gestation, increased (P < 0.05) fecal water content and decreased (P < 0.05) serum interleukin-6 concentration on d 110 of gestation and d 21 of lactation. In addition, sows fed SBP had lower (P < 0.01) abundance of Clostridium_sensu_stricto_1 and Terrisporobacter than those fed CON, but had greater (P < 0.05) abundance of Christensenellaceae_R-7_group and Ruminococcaceae_UCG-002 than those fed the other two diets on d 110 of gestation. On d 21 of lactation, supplementation of SBP decreased (P < 0.05) the abundance of Firmicutes and Lactobacillus, but enriched (P < 0.05) the abundance of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, Ruminococcaceae_UCG-002, Prevotellaceae_UCG_001 and unclassified_f__Lachnospiraceae compared with WB. Compared with CON, sows fed SBP had greater (P < 0.05) fecal concentrations of acetate, butyrate and total SCFAs during gestation and lactation, while sows fed WB only had greater (P < 0.05) fecal concentration of butyrate during lactation. CONCLUSIONS: Supplementation of dietary fiber during late gestation and lactation could improve sow metabolism and gut health, and SBP was more effective than WB.

3.
J Anim Sci ; 97(12): 4922-4933, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31722389

RESUMO

This study was conducted to investigate the effects of dietary supplementation with 2 sources of fiber, sugar beet pulp (SBP), and wheat bran (WB), on sow performance, milk quality, and intestinal health in piglets. Forty-five multiparous sows at day 85 of gestation were allocated to the following 3 treatments: 1) a corn-soybean meal basal diet (CON); 2) the CON diet supplemented with 20% SBP in gestation and 10% SBP in lactation (SBP); and 3) the CON diet supplemented with 30% WB in gestation and 15% WB in lactation (WB). The SBP diets increased (P < 0.05) sow ADFI during lactation, litter and piglet weaning weight, piglet ADG, immunoglobulin A (IgA), and interleukin-10 (IL-10) levels in the colostrum and IgA levels in the milk, while the WB diets only increased (P < 0.05) IL-10 levels in the milk when compared with the CON diets. Piglets from SBP-fed sows had greater (P < 0.05) serum growth hormone and insulin-like growth factor-1 levels than those from WB-fed or CON-fed sows, whereas piglets from WB-fed sows had greater (P < 0.05) serum GH levels than those from CON-fed sows. Serum diamine oxidase activity, endotoxin, IL-6, and tumor necrosis factor-α (TNF-α) levels were reduced (P < 0.05) in piglets from SBP-fed or WB-fed sows. Piglets from SBP-fed sows also had greater (P < 0.05) serum IL-10 levels than those from CON-fed sows. The ileal mRNA expression of TNF-α was reduced (P < 0.05) in piglets from SBP-fed or WB-fed sows. Piglets from SBP-fed sows had lower (P < 0.05) IL-6 expression, and greater (P < 0.05) IL-10 expression and secretory immunoglobulin A (SIgA) levels in the ileum than those from WB- or CON-fed sows. Piglets from WB-fed sows had greater (P < 0.05) IL-10 expression and SIgA levels compared with those from CON-fed sows. The ileal mRNA expression of occludin in the ileum was greater (P < 0.05) in piglets from SBP-fed sows than those from CON-fed sows. The ileal mRNA expression of ZO-1 was greater (P < 0.05) in piglets from WB-fed sows than those from CON-fed sows, but lower (P < 0.05) than those from SBP-fed sows. Piglets from SBP-fed sows had greater (P < 0.05) abundance of Christensenellaceae and butyrate levels in the colon, while piglets from WB-fed sows had greater (P < 0.05) abundance of Lactobacillaceae. Collectively, maternal SBP supplementation was more effective than WB in improving milk quality, enhancing growth performance and intestinal barrier function, and ameliorating intestinal inflammation in piglets.


Assuntos
Ração Animal/análise , Fibras na Dieta/farmacologia , Lactação/efeitos dos fármacos , Leite/química , Suínos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Colostro/metabolismo , Dieta/veterinária , Fibras na Dieta/análise , Suplementos Nutricionais , Feminino , Imunoglobulina A/metabolismo , Intestinos/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Materna , Leite/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA