Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 253: 109959, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648925

RESUMO

Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.


Assuntos
Encéfalo , Nicotina , Animais , Nicotina/farmacologia , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Agonistas Nicotínicos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Pró-Opiomelanocortina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Autoadministração , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Anorexia/induzido quimicamente
2.
Horm Behav ; 159: 105447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926623

RESUMO

Chronic use of nicotine is known to dysregulate metabolic signaling through altering circulating levels of feeding-related hormones, contributing to the onset of disorders like type 2 diabetes. However, little is known about the acute effects of nicotine on hormonal signaling. We previously identified an acute increase in food intake following acute nicotine, and we sought to determine whether this behavior was due to a change in hormone levels. We first identified that acute nicotine injection produces an increase in feeding behavior in dependent rats, but not nondependent rats. We confirmed that chronic nicotine use increases circulating levels of insulin, leptin, and ghrelin, and these correlate with rats' body weight and food intake. Acute nicotine injection in dependent animals decreased circulating GLP-1 and glucagon levels, and administration of glucagon prior to acute nicotine injection prevented the acute increase in feeding behavior. Thus, acute nicotine injection increases feeding behavior in dependent rats by decreasing glucagon signaling.


Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Animais , Feminino , Masculino , Ratos , Ingestão de Alimentos , Comportamento Alimentar/fisiologia , Grelina/farmacologia , Glucagon/metabolismo , Glucagon/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Nicotina/farmacologia
3.
Nat Chem Biol ; 19(11): 1406-1414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770699

RESUMO

The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.


Assuntos
Nicotina , Pseudomonas putida , Ratos , Animais , Oxigênio , Oxirredutases/metabolismo , Oxirredução
4.
Psychopharmacology (Berl) ; 239(3): 807-818, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35129671

RESUMO

RATIONALE: Nicotine consumption in both human and animal studies has been strongly associated with changes in feeding-related behaviors and metabolism. The current dogma is that nicotine is an anorexic agent that decreases food intake and increases metabolism, leading to decreased body weight gain. However, there are conflicting reports about the acute effects of nicotine on hunger in humans. No study has reported nicotine-induced decreases in food intake within minutes of consumption, suggesting that our understanding of the pharmacological effects of nicotine on appetite and feeding may be incorrect. OBJECTIVES: The aim of this study was to elucidate effects of acute nicotine intake on feeding and drinking behavior. METHODS: Adult male Wistar rats were trained to intravenously self-administer nicotine. Microstructural and macrostructural behavioral analyses were employed to look at changes in food and water intake at different timescales. RESULTS: At the macrostructural level (hours to days), nicotine decreased body weight gain, decreased feeding, and was associated with increases in feeding and body weight gain during abstinence. At the microstructural level (seconds to minutes), nicotine increased feeding and drinking behavior during the first 5 min after nicotine self-administration. This effect was also observed in animals that passively received nicotine, but the effect was not observed in animals that self-administered saline or passively received saline. CONCLUSIONS: These results challenge the notion that the initial pharmacological effect of nicotine is anorexigenic and paradoxically suggest that an acute increase in food intake minutes after exposure to nicotine may contribute to the long-term anorexigenic effects of nicotine.


Assuntos
Comportamento Alimentar , Nicotina , Animais , Peso Corporal , Ingestão de Alimentos , Masculino , Nicotina/farmacologia , Ratos , Ratos Wistar
5.
Neuropsychopharmacology ; 45(11): 1909-1919, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32544927

RESUMO

The debate about electronic cigarettes is dividing healthcare professionals, policymakers, manufacturers, and communities. A key limitation in our understanding of the cause and consequences of vaping is the lack of animal models of nicotine vapor self-administration. Here, we developed a novel model of voluntary electronic cigarette use in rats using operant behavior. We found that rats voluntarily exposed themselves to nicotine vapor to the point of reaching blood nicotine levels that are similar to humans. The level of responding on the active (nicotine) lever was similar to the inactive (air) lever and lower than the active lever that was associated with vehicle (polypropylene glycol/glycerol) vapor, suggesting low positive reinforcing effects and low nicotine vapor discrimination. Lever pressing behavior with nicotine vapor was pharmacologically prevented by the α4ß2 nicotinic acetylcholine receptor partial agonist and α7 receptor full agonist varenicline in rats that self-administered nicotine but not vehicle vapor. Moreover, 3 weeks of daily (1 h) nicotine vapor self-administration produced addiction-like behaviors, including somatic signs of withdrawal, allodynia, anxiety-like behavior, and relapse-like behavior after 3 weeks of abstinence. Finally, 3 weeks of daily (1 h) nicotine vapor self-administration produced cardiopulmonary abnormalities and changes in α4, α3, and ß2 nicotinic acetylcholine receptor subunit mRNA levels in the nucleus accumbens and medial prefrontal cortex. These findings validate a novel animal model of nicotine vapor self-administration in rodents with relevance to electronic cigarette use in humans and highlight the potential addictive properties and harmful effects of chronic nicotine vapor self-administration.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Receptores Nicotínicos , Vaping , Animais , Condicionamento Operante , Nicotina , Agonistas Nicotínicos , Ratos , Autoadministração
6.
Brain Res ; 1740: 146850, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330519

RESUMO

The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.


Assuntos
Alcoolismo/metabolismo , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Tabagismo/metabolismo , Alcoolismo/psicologia , Animais , Ansiedade/metabolismo , Ansiedade/psicologia , Feminino , Humanos , Masculino , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Tabagismo/psicologia
7.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341122

RESUMO

Substance use disorders have a complex etiology. Genetics, the environment, and behavior all play a role in the initiation, escalation, and relapse of drug use. Recently, opioid use disorder has become a national health crisis. One aspect of opioid addiction that has yet to be fully examined is the effects of alterations of the microbiome and gut-brain axis signaling on central nervous system activity during opioid intoxication and withdrawal. The effect of microbiome depletion on the activation of neuronal ensembles was measured by detecting Fos-positive (Fos+) neuron activation during intoxication and withdrawal using a rat model of oxycodone dependence. Daily oxycodone administration (2 mg/kg) increased pain thresholds and increased Fos+ neurons in the basolateral amygdala (BLA) during intoxication, with a decrease in pain thresholds and increase in Fos+ neurons in the periaqueductal gray (PAG), central nucleus of the amygdala (CeA), locus coeruleus (LC), paraventricular nucleus of the thalamus (PVT), agranular insular cortex (AI), bed nucleus of the stria terminalis (BNST), and lateral habenula medial parvocellular region during withdrawal. Microbiome depletion produced widespread but region- and state-specific changes in neuronal ensemble activation. Oxycodone intoxication and withdrawal also increased functional connectivity among brain regions. Microbiome depletion resulted in a decorrelation of this functional network. These data indicate that microbiome depletion by antibiotics produces widespread changes in the recruitment of neuronal ensembles that are activated by oxycodone intoxication and withdrawal, suggesting that the gut microbiome may play a role in opioid use and dependence. Future studies are needed to better understand the molecular, neurobiological, and behavioral effects of microbiome depletion on addiction-like behaviors.


Assuntos
Microbiota , Oxicodona , Tonsila do Cerebelo/metabolismo , Animais , Entorpecentes , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
8.
Temperature (Austin) ; 6(2): 158-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286026

RESUMO

During calorie restriction (CR), endotherms adjust several physiological processes including the decrease of core body temperature (Tb) and reduction of energy expenditure. We recently found that CR-induced hypothermia is regulated in a sex-dependent manner in mice with lowered central insulin-like growth factor receptor signaling. Here, we describe the contribution of sex hormones to CR-induced hypothermia in wild type C57BL6 mice by measuring Tb of female and male mice following bilateral gonadectomy and hormonal replacement. Specifically, we evaluated the effects of progesterone (P4), 17-ß estradiol (E2), a combination of both (P4 + E2) in females and of 5-α dihydrotestosterone (5-α DHT) in males. Gonadectomy resulted in an earlier and stronger CR-induced hypothermia in both sexes. These effects were fully antagonized in females by E2 replacement, but not by P4, which had only minor and partial effects when used alone and did not prevent the action of E2 during CR when both hormones were given in combination. 5-α-DHT had only minor and transient effects on preventing the reduction of Tb during CR on gonadectomized male mice. These findings indicate that gonadal hormones contribute to sex-specific regulation of Tb and energy expenditure when nutrient availability is scarce. Abbreviations: AL: ad libitum; ANOVA: analysis of variance; CR: calorie restriction; E2: 17-ß estradiol; GNX: gonadectomy or gonadectomized; IGF-1R: insulin-like growth factor 1 receptor; POA: preoptic area; P4: progesterone; RM: repeated measures; SD: standard deviation; SEM: standard error of mean; Tb: core body temperature; WT: wildtype; 5-α DHT: 5-α dihydrotestosterone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA