Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 706207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335541

RESUMO

Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.

2.
Vox Sang ; 115(6): 525-535, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32378223

RESUMO

BACKGROUND: With the recent interest in personalized medicine for cancer patients and immune therapy, the field of cancer vaccines has been resurrected. Previous autologous, whole cell tumour vaccine trials have not produced convincing results due, in part to poor patient selection and inactivation methos that are harsh on the cells. These methods can alter protein structure and antigenic profiles making vaccine candidates ineffective in stimulating immune response to autochthonous tumour cells. MATERIALS AND METHODS: We investigated a novel method for inactivating tumour cells that uses UVA/UVB light and riboflavin (vitamin B2) (RF + UV). RF + UV inactivates the tumour cells' ability to replicate, yet preserves tumour cell integrity and antigenicity. RESULTS: Our results demonstrate that proteins are preserved on the surface of RF + UV-inactivated tumour cells and that they are immunogenic via induction of dendritic cell maturation, increase in IFNγ production and generation of tumour cell-specific IgG. Moreover, when formulated with an adjuvant ('Innocell vaccine') and tested in different murine tumour primary and metastatic disease models, decreased tumour growth, decreased metastatic disease and prolonged survival were observed. In addition, immune cells obtained from tumour tissue following vaccination had decreased exhausted and regulatory T cells, suggesting that activation of intra-tumoural T cells may be playing a role leading to reduced tumour growth. CONCLUSIONS: These data suggest that the RF + UV inactivation of tumour cells may provide an efficacious method for generating autologous whole tumour cell vaccines for use in cancer patients.


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Neoplasias Experimentais/terapia , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Imunogenicidade da Vacina , Camundongos , Riboflavina/toxicidade , Raios Ultravioleta
3.
Clin Vaccine Immunol ; 24(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29046306

RESUMO

As yet, very few vaccine candidates with activity in animals against Mycobacterium tuberculosis infection have been tested as therapeutic postexposure vaccines. We recently described two pools of mycobacterial proteins with this activity, and here we describe further studies in which four of these proteins (Rv1738, Rv2032, Rv3130, and Rv3841) were generated as a fusion polypeptide and then delivered in a novel yeast-based platform (Tarmogen) which itself has immunostimulatory properties, including activation of Toll-like receptors. This platform can deliver antigens into both the class I and class II antigen presentation pathways and stimulate strong Th1 and Th17 responses. In mice this fusion vaccine, designated GI-19007, was immunogenic and elicited strong gamma interferon (IFN-γ) and interleukin-17 (IL-17) responses; despite this, they displayed minimal prophylactic activity in mice that were subsequently infected with a virulent clinical strain. In contrast, in a therapeutic model in the guinea pig, GI-19007 significantly reduced the lung bacterial load and reduced lung pathology, particularly in terms of secondary lesion development, while significantly improving survival in one-third of these animals. In further studies in which guinea pigs were vaccinated with BCG before challenge, therapeutic vaccination with GI-19007 initially improved survival versus that of animals given BCG alone, although this protective effect was gradually lost at around 400 days after challenge. Given its apparent ability to substantially limit bacterial dissemination within and from the lungs, GI-19007 potentially can be used to limit lung damage as well as facilitating chemotherapeutic regimens in infected individuals.


Assuntos
Técnicas de Transferência de Genes , Mycobacterium tuberculosis/imunologia , Saccharomyces cerevisiae/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Feminino , Cobaias , Interferon gama/metabolismo , Interleucina-17/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Profilaxia Pós-Exposição/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Análise de Sobrevida , Resultado do Tratamento , Tuberculose/imunologia , Tuberculose/patologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
4.
Clin Vaccine Immunol ; 22(1): 91-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392011

RESUMO

The global epidemic caused by the bacterial pathogen Mycobacterium tuberculosis continues unabated. Moreover, the only available vaccine against tuberculosis, Mycobacterium bovis bacillus Calmette-Guérin (BCG), demonstrates variable efficacy. To respond to this global threat, new animal models that mimic the pathological disease process in humans are required for vaccine testing. One new model, susceptible C3Heb/FeJ mice, is similar to human tuberculosis in that these animals are capable of forming necrotic tubercle granulomas, in contrast to resistant C3H/HeOuJ mice. In this study, we evaluated the impact of prior BCG vaccination of C3Heb/FeJ and C3H/HeOuJ mice on exposure to a low-dose aerosol of Mycobacterium tuberculosis W-Beijing strain SA161. Both BCG-vaccinated murine strains demonstrated reduced bacterial loads 25 days after infection compared to controls, indicating vaccine efficacy. However, during chronic infection, vaccine efficacy waned in C3H/HeOuJ but not in C3Heb/FeJ mice. Protection in vaccinated C3Heb/FeJ mice was associated with reduced numbers of CD11b(+) Gr1(+) cells, increased numbers of effector and memory T cells, and an absence of necrotic granulomas. BCG vaccine efficacy waned in C3H/HeOuJ mice, as indicated by reduced expression of gamma interferon (IFN-γ) and increased expressions of interleukin-17 (IL-17), IL-10, and Foxp3 by T cells compared to C3Heb/FeJ mice. This is the first murine vaccine model system described to date that can be utilized to dissect differential vaccine-derived immune efficacy.


Assuntos
Vacina BCG/imunologia , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/análise , Memória Imunológica , Imunofenotipagem , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-17/biossíntese , Camundongos Endogâmicos C3H , Subpopulações de Linfócitos T , Linfócitos T/imunologia
5.
Tuberculosis (Edinb) ; 94(6): 606-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25621360

RESUMO

In this study we conducted a microarray-based whole genomic analysis of gene expression in the lungs after exposure of guinea pigs to a low dose aerosol of the Atypical Beijing Western Cape TT372 strain of Mycobacterium tuberculosis, after harvesting lung tissues three weeks after infection at a time that effector immunity is starting to peak. The infection resulted in a very large up-regulation of multiple genes at this time, particularly in the context of a "chemokine storm" in the lungs. Overall gene expression was considerably reduced in animals that had been vaccinated with BCG two months earlier, but in both cases strong signatures featuring gamma interferon [IFNγ] and tumor necrosis factor [TNFα] were observed indicating the potent TH1 response in these animals. Even though their effects are not seen until later in the infection, even at this early time point gene expression patterns associated with the potential emergence of regulatory T cells were observed. Genes involving lung repair, response to oxidative stress, and cell trafficking were strongly expressed, but interesting these gene patterns differed substantially between the infected and vaccinated/infected groups of animals. Given the importance of this species as a relevant and cost-effective small animal model of tuberculosis, this approach has the potential to provide new information regarding the effects of vaccination on control of the disease process.


Assuntos
Genoma , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/genética , Animais , Vacina BCG , Carga Bacteriana/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Cobaias , Interferon gama/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Células Th1/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/prevenção & controle , Fator de Necrose Tumoral alfa/biossíntese , Regulação para Cima , Virulência/genética , Virulência/imunologia
6.
J Proteome Res ; 11(10): 4873-84, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22873951

RESUMO

With the understanding that the laboratory propagated strain of Mycobacterium tuberculosis H37Rv is of modest virulence and is drug susceptible, in the present study, we performed a nuclear magnetic resonance-based metabolomic analysis of lung tissues and serum obtained from guinea pigs infected by low dose aerosol exposure to clinical isolates of Mycobacterium tuberculosis. High Resolution Magic Angle Spinning NMR coupled with multivariate statistical analysis of 159 lung tissues obtained from multiple locations of age-matched naïve and 30 and 60 days of infected guinea pig lungs revealed a wide dispersal of metabolic patterns, but within these, distinct clusters of signatures could be seen that differentiated between naive control and infected animals. Several metabolites were identified that changed in concert with the progression of each infection. Major metabolites that could be interpreted as indicating host glutaminolysis were consistent with activated host immune cells encountering increasingly hypoxic conditions in the necrotic lung lesions. Moreover, glutathione levels were constantly elevated, probably in response to oxygen radical production in these lesions. Additional distinct signatures were also seen in infected serum, with altered levels of several metabolites. Multivariate statistical analysis clearly differentiated the infected from the uninfected sera; in addition, Receiver Operator Characteristic curve generated with principal component 1 scores showed an area under the curve of 0.908. These data raise optimism that discrete metabolomic signatures can be defined that can predict the progression of the tuberculosis disease process, and form the basis of an innovative and rapid diagnostic process.


Assuntos
Metaboloma , Mycobacterium tuberculosis/fisiologia , Tuberculose Pulmonar/sangue , Acetatos/sangue , Monofosfato de Adenosina/sangue , Animais , Colina/sangue , Epidemias , Etanolamina/sangue , Formiatos/sangue , Ácido Glutâmico/sangue , Glutamina/sangue , Cobaias , Interações Hospedeiro-Patógeno , Ácido Láctico/sangue , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Espectroscopia de Ressonância Magnética , Análise Multivariada , Niacinamida/sangue , Fosfocreatina/sangue , Análise de Componente Principal , Curva ROC , Tuberculoma/metabolismo , Tuberculoma/microbiologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia
7.
PLoS One ; 7(3): e34148, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493658

RESUMO

The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL) in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG) prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence.


Assuntos
Lipoproteínas LDL/metabolismo , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/metabolismo , Animais , Vacina BCG/administração & dosagem , Antígenos CD36/metabolismo , Cobaias , Imuno-Histoquímica , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Tuberculose Pulmonar/microbiologia
8.
Vaccine ; 30(9): 1572-82, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22244979

RESUMO

Bacillus-Calmette-Guerin (BCG), the only human tuberculosis vaccine, primes a partially protective immune response against Mycobacterium tuberculosis infection in humans and animals. In guinea pigs, BCG vaccination slows the progression of disease and reduces the severity of necrotic granulomas, which harbor a population of drug-tolerant bacilli. The objective of this study was to determine if reducing disease severity by BCG vaccination of guinea pigs prior to M. tuberculosis challenge enhanced the efficacy of combination drug therapy. At 20 days of infection, treatment of vaccinated and non-vaccinated animals with rifampin, isoniazid, and pyrizinamide (RHZ) was initiated for 4 or 8 weeks. On days 50, 80 and 190 of infection (10 weeks after drug were withdrawn), treatment efficacy was evaluated by quantifying clinical condition, bacterial loads, lesion severity, and dynamic changes in peripheral blood and lung leukocyte numbers by flow cytometry. In a separate, long-term survival study, treatment efficacy was evaluated by determining disease reactivation frequency post-mortem. BCG vaccination alone delayed pulmonary and extra-pulmonary disease progression, but failed to prevent dissemination of bacilli and the formation of necrotic granulomas. Drug therapy either alone or in combination with BCG, was more effective at lessening clinical disease and lesion severity compared to control animals or those receiving BCG alone. Fewer residual lesions in BCG vaccinated and drug treated animals, equated to a reduced frequency of reactivation disease and improvement in survival even out to 500 days of infection. The combining of BCG vaccination and drug therapy was more effective at resolving granulomas such that fewer animals had evidence of residual infection and thus less reactivation disease.


Assuntos
Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/patogenicidade , Tuberculose/prevenção & controle , Tuberculose/terapia , Animais , Vacina BCG/imunologia , Terapia Combinada , Feminino , Granuloma/microbiologia , Granuloma/patologia , Cobaias , Isoniazida/farmacologia , Pulmão/microbiologia , Pulmão/patologia , Mycobacterium tuberculosis/imunologia , Pirazinamida/farmacologia , Rifampina/farmacologia , Tuberculose/imunologia , Tuberculose/patologia
9.
Open AIDS J ; 5: 86-95, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046211

RESUMO

BACKGROUND: Mycobacterium tuberculosis remains among the leading causes of death from an infectious agent in the world and exacerbates disease caused by the human immunodeficiency virus (HIV). HIV infected individuals are prone to lung infections by a variety of microbial pathogens, including M. tuberculosis. While the destruction of the adaptive immune response by HIV is well understood, the actual pathogenesis of tuberculosis in co-infected individuals remains unclear. Tat is an HIV protein essential for efficient viral gene transcription, is secreted from infected cells, and is known to influence a variety of host inflammatory responses. We hypothesize Tat contributes to pathophysiological changes in the lung microenvironment, resulting in impaired host immune responses to infection by M. tuberculosis. RESULTS: Herein, we show transgenic mice that express Tat by lung alveolar cells are more susceptible than non-transgenic control littermates to a low-dose aerosol infection of M. tuberculosis W-Beijing SA161. Survival assays demonstrate accelerated mortality rates of the Tat transgenic mice compared to non-transgenics. Tat transgenic mice also showed poorly organized lung granulomata-like lesions. Analysis of the host immune response using quantitative RT-PCR, flow cytometry for surface markers, and intracellular cytokine staining showed increased expression of pro-inflammatory cytokines in the lungs, increased numbers of cells expressing ICAM1, increased numbers of CD4+CD25+Foxp3+ T regulatory cells, and IL-4 producing CD4+ T cells in the Tat transgenics compared to infected non-tg mice. CONCLUSIONS: Our data show quantitative differences in the inflammatory response to the SA161 clinical isolate of M. tuberculosis W-Beijing between Tat transgenic and non-transgenic mice, suggesting Tat contributes to the pathogenesis of tuberculosis.

10.
PLoS One ; 6(10): e26254, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028843

RESUMO

The development of granulomatous inflammation with caseous necrosis is an important but poorly understood manifestation of tuberculosis in humans and some animal models. In this study we measured the byproducts of oxidative stress in granulomatous lesions as well as the systemic antioxidant capacity of BCG vaccinated and non-vaccinated guinea pigs experimentally infected with Mycobacterium tuberculosis. In non-vaccinated guinea pigs, oxidative stress was evident within 2 weeks of infection as measured by a decrease in the serum total antioxidant capacity and blood glutathione levels accompanied by an increase in malondialdehyde, a byproduct of lipid peroxidation, within lesions. Despite a decrease in total and reduced blood glutathione concentrations, there was an increase in lesion glutathione by immunohistochemistry in response to localized oxidative stress. In addition there was an increase in the expression of the host transcription factor nuclear erythroid 2 p45-related factor 2 (Nrf2), which regulates several protein and non-proteins antioxidants, including glutathione. Despite the increase in cytoplasmic expression of Nrf2, immunohistochemical staining revealed a defect in Nrf2 nuclear translocation within granulomatous lesions as well as a decrease in the expression of the Nrf2-regulated antioxidant protein NQO1. Treating M. tuberculosis-infected guinea pigs with the antioxidant drug N-acetyl cysteine (NAC) partially restored blood glutathione concentrations and the serum total antioxidant capacity. Treatment with NAC also decreased spleen bacterial counts, as well as decreased the lung and spleen lesion burden and the severity of lesion necrosis. These data suggest that the progressive oxidative stress during experimental tuberculosis in guinea pigs is due in part to a defect in host antioxidant defenses, which, we show here, can be partially restored with antioxidant treatment. These data suggest that the therapeutic strategies that reduce oxidant-mediated tissue damage may be beneficial as an adjunct therapy in the treatment and prevention of tuberculosis in humans.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo , Tuberculose/metabolismo , Acetilcisteína/farmacologia , Animais , Carga Bacteriana/efeitos dos fármacos , Carga Bacteriana/imunologia , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Glutationa/sangue , Cobaias , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Malondialdeído/metabolismo , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Tuberculose/sangue , Tuberculose/patologia , Tuberculose/prevenção & controle , Vacinação
11.
PLoS One ; 6(9): e24726, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931831

RESUMO

BACKGROUND: Chronic pulmonary disease and skin/soft tissue infections due to non-tuberculous mycobacteria (NTM) of the Mycobacterium chelonae-abscessus-massiliense group is an emerging health problem worldwide. Moreover, the cure rate for the infections this group causes is low despite aggressive treatment. Post-surgical outbreaks that reached epidemic proportions in Brazil recently were caused by M. massiliense isolates resistant to high-level disinfection with glutaraldehyde (GTA). Understanding the differences in the virulence and host immune responses induced by NTM differing in their sensitivity to disinfectants, and therefore their relative threat of causing outbreaks in hospitals, is an important issue. METHODOLOGY/PRINCIPAL FINDING: We compared the replication and survival inside macrophages of a GTA-susceptible reference Mycobacterium massiliense clinical isolate CIP 108297 and an epidemic strain from Brazil, CRM-0019, and characterized the immune responses of IFNγ knockout mice exposed to a high dose aerosol with these two isolates. CRM-0019 replicated more efficiently than CIP 108297 inside mouse bone marrow macrophages. Moreover, the animals infected with CRM-0019 showed a progressive lung infection characterized by a delayed influx of CD4+ and CD8+ T cells, culminating in extensive lung consolidation and demonstrated increased numbers of pulmonary CD4+ Foxp3+ regulatory T cells compared to those infected with the reference strain. Immunosuppressive activity of regulatory T cells may contribute to the progression and worsening of NTM disease by preventing the induction of specific protective immune responses. CONCLUSIONS/SIGNIFICANCE: These results provide the first direct evidence of the increased virulence in macrophages and mice and pathogenicity in vivo of the Brazilian epidemic isolate and the first observation that NTM infections can be associated with variable levels of regulatory T cells which may impact on their virulence and ability to persist in the host.


Assuntos
Mycobacterium/patogenicidade , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Infecções por Mycobacterium/microbiologia , Virulência
12.
Clin Vaccine Immunol ; 18(9): 1527-35, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21795460

RESUMO

Despite issues relating to variable efficacy in the past, the Mycobacterium bovis BCG vaccine remains the basis for new-generation recombinant vaccines currently in clinical trials. To date, vaccines have been tested mostly against laboratory strains and not against the newly emerging clinical strains. In this study, we evaluated the ability of BCG Pasteur to protect mice from aerosol infections with two highly virulent W-Beijing clinical strains, HN878 and SA161. In a conventional 30-day protection assay, BCG was highly protective against both strains, but by day 60 of the assay, this protection was diminished. Histological examination of the lungs of vaccinated animals showed reduced lung consolidation and smaller and more-organized granulomas in the vaccinated mice after 30 days, but in both cases, these tissues demonstrated worsening pathology over time. Effector T cell responses were increased in the vaccinated mice infected with HN878, but these diminished in number after day 30 of the infections concomitant with increased CD4(+) Foxp3(+) T cells in the lungs, draining lymph nodes, and the spleen. Given the concomitant decrease in effector immunity and continued expansion of regulatory Foxp3(+) cells observed here, it is reasonable to hypothesize that downregulation of effector immunity by these cells may be a serious impediment to the efficacy of BCG-based vaccines.


Assuntos
Vacina BCG/imunologia , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/patogenicidade , Linfócitos T Reguladores/imunologia , Tuberculose Pulmonar/imunologia , Animais , Vacina BCG/administração & dosagem , Feminino , Fatores de Transcrição Forkhead/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Organismos Livres de Patógenos Específicos , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/prevenção & controle , Vacinação , Virulência
13.
J Infect Dis ; 203(9): 1240-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357942

RESUMO

BACKGROUND: Cigarette smoke (CS) exposure is an epidemiological risk factor for tuberculosis, although the biological basis has not been elucidated. METHODS: We exposed C57BL/6 mice to CS for 14 weeks and examined their ability to control an aerosol infection of Mycobacterium tuberculosis Erdman. RESULTS: CS-exposed mice had more M. tuberculosis isolated from the lungs and spleens after 14 and 30 d, compared with control mice. The CS-exposed mice had worse lung lesions and less lung and splenic macrophages and dendritic cells (DCs) producing interleukin12 and tumor necrosis factor α (TNF-α). There were significantly more interleukin 10-producing macrophages and DCs in the spleens of infected CS-exposed mice than in non-CS-exposed controls. CS-exposed mice also showed a diminished influx of interferon γ-producing and TNF-α-producing CD4(+) and CD8(+) effector and memory T cells into the lungs and spleens. There was a trend toward an increased number of viable intracellular M. tuberculosis in macrophages isolated from humans who smoke compared with nonsmokers. THP-1 human macrophages and primary human alveolar macrophages exposed to CS extract, nicotine, or acrolein showed an increased burden of intracellular M. tuberculosis. CONCLUSION: CS suppresses the protective immune response to M. tuberculosis in mice, human THP-1 cells, and primary human alveolar macrophages.


Assuntos
Suscetibilidade a Doenças , Mycobacterium tuberculosis/imunologia , Fumar/efeitos adversos , Tuberculose/imunologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
14.
Antimicrob Agents Chemother ; 55(1): 124-31, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937788

RESUMO

The experimental compound TMC207 is showing promise against infections caused by Mycobacterium tuberculosis both in a variety of animal studies and in the field. In this study, we used the guinea pig model, a species that shows several similarities to human tuberculosis, including the hallmark of primary granuloma necrosis, to determine the efficacy of a combination regimen combining TMC207 with rifampin and pyrazinamide. This drug regimen rapidly reduced the bacterial load in the lungs to undetectable levels by 8 weeks of treatment. This reduction was associated with a substantial improvement in lung pathology, but despite this effect areas of residual necrosis still remained. In the draining lymph nodes, however, tissue damage was rapid and not significantly reversed by the drug treatment. Approximately 10 to 11 months after the treatment had ended, the animals began to trigger a Karnovsky scale indicating bacterial regrowth and potential relapse, an event confirmed by the new development of both pulmonary and extrapulmonary granulomatous lesions. Interestingly, a similar rate of relapse was also seen in animals receiving 24 weeks of rifampin, pyrazinamide, and isoniazid standard chemotherapy. These data indicate that TMC207 could be a useful addition to current treatment regimens for tuberculosis.


Assuntos
Antituberculosos/uso terapêutico , Pirazinamida/uso terapêutico , Quinolinas/uso terapêutico , Rifampina/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Diarilquinolinas , Feminino , Citometria de Fluxo , Cobaias , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia
15.
Antimicrob Agents Chemother ; 54(5): 1820-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20160055

RESUMO

The purpose of this study was 2-fold. First, we evaluated standard chemotherapy in the guinea pig model of tuberculosis to determine if this animal species could productively be used for this purpose. Second, given the similarities of the pathology of disease in guinea pigs and humans, we wished to evaluate additional parameters, including magnetic resonance imaging, microscopy, and cytokine expression and lymphocyte phenotypes, in response to an infection treated with drug therapy. This study shows that conventional rifampin-isoniazid-pyrazinamide chemotherapy significantly decreased the numbers of the highly virulent Erdman K01 strain of Mycobacterium tuberculosis, with most of the bacilli being eliminated in a month. Despite this result, bacteria could still be detected in the lungs and other tissues for at least another 3 to 4 months. Resolution of the nonnecrotic granulomas in the lungs and lymph nodes could be clearly visualized by magnetic resonance imaging at the macroscopic level. Microscopically, the majority of the pulmonary and extrapulmonary inflammation resolved spontaneously, leaving residual lesions composed of dystrophic calcification and fibrosis marking the site of necrosis of the primary lesion. Residual calcified lesions, which were also associated with pulmonary lymphangitis, contained acid-fast bacilli even following aggressive chemotherapy. The presence of intact extracellular bacilli within these lesions suggests that these could serve as the primary sites of disease reactivation. The chemotherapy reduced the level of T-cell influx into infected tissues and was accompanied by a large and sustained increase in TH1 cytokine expression. Chemotherapy also prevented the emergence in lung tissues of high levels of interleukin-10 and Foxp3-positive cells, known markers of regulatory T cells.


Assuntos
Antituberculosos/farmacologia , Modelos Animais de Doenças , Cobaias , Rifampina/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Animais , Animais não Endogâmicos , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimioterapia Combinada , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Interleucina-10/metabolismo , Isoniazida/farmacologia , Antígenos Comuns de Leucócito/metabolismo , Pulmão/patologia , Linfonodos/patologia , Imageamento por Ressonância Magnética , Pirazinamida/farmacologia , Células Th1/imunologia , Células Th1/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
16.
Clin Vaccine Immunol ; 15(8): 1248-58, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18508930

RESUMO

Mycobacterium bovis bacillus Calmette-Guérin (BCG) currently remains the only licensed vaccine for the prevention of tuberculosis. In this study, we used a newly described flow cytometric technique to monitor changes in cell populations accumulating in the lungs and lymph nodes of naïve and vaccinated guinea pigs challenged by low-dose aerosol infection with virulent Mycobacterium tuberculosis. As anticipated, vaccinated guinea pigs controlled the growth of the challenge infection more efficiently than controls did. This early phase of bacterial control in immune animals was associated with increased accumulation of CD4 and CD8 T cells, including cells expressing the activation marker CD45, as well as macrophages expressing class II major histocompatibility complex molecules. As the infection continued, the numbers of T cells in the lungs of vaccinated animals waned, whereas the numbers of these cells expressing CD45 increased. Whereas BCG vaccination reduced the influx of heterophils (neutrophils) into the lungs, an early B-cell influx was observed in these vaccinated animals. Overall, vaccine protection was associated with reduced pathology and lung damage in the vaccinated animals. These data provide the first direct evidence that BCG vaccination accelerates the influx of protective T-cell and macrophage populations into the infected lungs, diminishes the accumulation of nonprotective cell populations, and reduces the severity of lung pathology.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/patogenicidade , Linfócitos T/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Bovinos , Feminino , Citometria de Fluxo/métodos , Cobaias , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/microbiologia , Linfonodos/patologia , Proteína Cofatora de Membrana/metabolismo , Organismos Livres de Patógenos Específicos , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Vacinação
17.
Tuberculosis (Edinb) ; 88(1): 69-79, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942369

RESUMO

The growth and virulence of Mycobacterium tuberculosis depends on its ability to scavenge host iron, an essential and limited micronutrient in vivo. In this study, we show that ferric iron accumulates both intra- and extra-cellularly in the primary lung lesions of guinea pigs aerosol-infected with the H37Rv strain of M. tuberculosis. Iron accumulated within macrophages at the periphery of the primary granulomatous lesions while extra-cellular ferric iron was concentrated in areas of lesion necrosis. Accumulation of iron within primary lesions was preceded by an increase in expression of heavy chain (H) ferritin, lactoferrin and receptors for transferrin, primarily by macrophages and granulocytes. The increased expression of intra-cellular H ferritin and extra-cellular lactoferrin, more so than transferrin receptor, paralleled the development of necrosis within primary lesions. The deposition of extra-cellular ferric iron within necrotic foci coincided with the accumulation of calcium and phosphorus and other cations in the form of dystrophic calcification. Primary lung lesions from guinea pigs vaccinated with Mycobactrium bovis BCG prior to experimental infection, had reduced iron accumulation as well as H ferritin, lactoferrin and transferrin receptor expression. The amelioration of primary lesion necrosis and dystrophic calcification by BCG vaccination was coincident with the lack of extra-cellular ferric iron and lactoferrin accumulation. These data demonstrate that BCG vaccination ameliorates primary lesion necrosis, dystrophic mineralization and iron accumulation, in part by down-regulating the expression of macrophage H ferritin, lactoferrin and transferrin receptors, in vivo.


Assuntos
Vacina BCG/farmacologia , Calcinose/prevenção & controle , Ferritinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Pulmão/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose Pulmonar/metabolismo , Animais , Cálcio/análise , Ferritinas/análise , Cobaias , Imuno-Histoquímica
18.
Tuberculosis (Edinb) ; 86(5): 386-94, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16473044

RESUMO

Guinea pigs infected by low dose aerosol with the H37Rv strain of Mycobacterium tuberculosis rapidly developed granulomatous lesions in the pulmonary parenchyma and within the intra-thoracic hilar lymph node cluster. Lung lesions showed no predilection for specific lobes and were perivascular, peribronchial and peribronchiolar throughout the subpleural, hilar and pulmonary parenchyma. Marked hilar lymph node enlargement was due to coalescing foci of subcapsular, paracortical and medullary granulomatous inflammation that progressed to necrosis that effaced normal lymph node architecture. Lymph node lesions became severe and progressed more rapidly than pulmonary lesions. Immunization with BCG 6 weeks prior to infection significantly reduced the lung and lymph node lesion burden as well as the progression to necrosis in both tissues. Lymph node inflammation in BCG immunized animals partially resolved and was replaced by fibroblasts and fibrous connective tissue while lesions from non-immunized animals continued to progress to necrosis. We discuss here the observation that the distribution and progression of lung and lymph node lesions in the guinea pig aerosol model of tuberculosis have considerable similarity to the naturally occurring disease in children.


Assuntos
Linfadenite/patologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/patologia , Animais , Vacina BCG/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Cobaias , Linfadenite/microbiologia , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA