Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Leukemia ; 38(5): 1182-1186, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443608

RESUMO

Monosomy 7 and del(7q) are among the most common and poorly understood genetic alterations in myelodysplastic neoplasms and acute myeloid leukemia. Chromosome band 7q22 is a minimally deleted segment in myeloid malignancies with a del(7q). However, the rarity of "second hit" mutations supports the idea that del(7q22) represents a contiguous gene syndrome. We generated mice harboring a 1.5 Mb germline deletion of chromosome band 5G2 syntenic to human 7q22 that removes Cux1 and 27 additional genes. Hematopoiesis is perturbed in 5G2+/del mice but they do not spontaneously develop hematologic disease. Whereas alkylator exposure modestly accelerated tumor development, the 5G2 deletion did not cooperate with KrasG12D, NrasG12D, or the MOL4070LTR retrovirus in leukemogenesis. 5G2+/del mice are a novel platform for interrogating the role of hemopoietic stem cell attrition/stress, cooperating mutations, genotoxins, and inflammation in myeloid malignancies characterized by monosomy 7/del(7q).


Assuntos
Deleção Cromossômica , Modelos Animais de Doenças , Animais , Camundongos , Cromossomos Humanos Par 7/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Camundongos Endogâmicos C57BL
2.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681415

RESUMO

A T50I substitution in the K-Ras interswitch domain causes Noonan syndrome and emerged as a third-site mutation that restored the in vivo transforming activity and constitutive MAPK pathway activation by an attenuated KrasG12D,E37G oncogene in a mouse leukemia model. Biochemical and crystallographic data suggested that K-RasT50I increases MAPK signal output through a non-GTPase mechanism, potentially by promoting asymmetric Ras:Ras interactions between T50 and E162. We generated a "switchable" system in which K-Ras mutant proteins expressed at physiologic levels supplant the fms like tyrosine kinase 3 (FLT3) dependency of MOLM-13 leukemia cells lacking endogenous KRAS and used this system to interrogate single or compound G12D, T50I, D154Q, and E162L mutations. These studies support a key role for the asymmetric lateral assembly of K-Ras in a plasma membrane-distal orientation that promotes the formation of active Ras:Raf complexes in a membrane-proximal conformation. Disease-causing mutations such as T50I are a valuable starting point for illuminating normal Ras function, elucidating mechanisms of disease, and identifying potential therapeutic opportunities for Rasopathy disorders and cancer.


Assuntos
Leucemia , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Modelos Animais de Doenças , Células Germinativas , Mutação em Linhagem Germinativa , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas ras
4.
J Clin Oncol ; 41(24): 3973-3975, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37319399
6.
Blood Adv ; 7(14): 3479-3484, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-36897249

RESUMO

Glucocorticoids (GCs) are the cornerstone of acute lymphoblastic leukemia (ALL) therapy. Although mutations in NR3C1, which encodes the GC receptor (GR), and other genes involved in GC signaling occur at relapse, additional mechanisms of adaptive GC resistance are uncertain. We transplanted and treated 10 primary mouse T-lineage acute lymphoblastic leukemias (T-ALLs) initiated by retroviral insertional mutagenesis with GC dexamethasone (DEX). Multiple distinct relapsed clones from 1 such leukemia (T-ALL 8633) exhibited discrete retroviral integrations that upregulated Jdp2 expression. This leukemia harbored a Kdm6a mutation. In the human T-ALL cell line CCRF-CEM, enforced JDP2 overexpression conferred GC resistance, whereas KDM6A inactivation unexpectedly enhanced GC sensitivity. In the context of KDM6A knockout, JDP2 overexpression induced profound GC resistance, counteracting the sensitization conferred by KDM6A loss. These resistant "double mutant" cells with combined KDM6A loss and JDP2 overexpression exhibited decreased NR3C1 mRNA and GR protein upregulation upon DEX exposure. Analysis of paired samples from 2 patients with KDM6A-mutant T-ALL in a relapsed pediatric ALL cohort revealed a somatic NR3C1 mutation at relapse in 1 patient and a markedly elevated JDP2 expression in the other. Together, these data implicate JDP2 overexpression as a mechanism of adaptive GC resistance in T-ALL, which functionally interacts with KDM6A inactivation.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Camundongos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Dexametasona/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Glucocorticoides/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Recidiva , Proteínas Repressoras
7.
Cardiol Young ; 33(5): 754-759, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35673794

RESUMO

BACKGROUND: Electroanatomic mapping systems are increasingly used during ablations to decrease the need for fluoroscopy and therefore radiation exposure. For left-sided arrhythmias, transseptal puncture is a common procedure performed to gain access to the left side of the heart. We aimed to demonstrate the radiation exposure associated with transseptal puncture. METHODS: Data were retrospectively collected from the Catheter Ablation with Reduction or Elimination of Fluoroscopy registry. Patients with left-sided accessory pathway-mediated tachycardia, with a structurally normal heart, who had a transseptal puncture, and were under 22 years of age were included. Those with previous ablations, concurrent diagnostic or interventional catheterisation, and missing data for fluoroscopy use or procedural outcomes were excluded. Patients with a patent foramen ovale who did not have a transseptal puncture were selected as the control group using the same criteria. Procedural outcomes were compared between the two groups. RESULTS: There were 284 patients in the transseptal puncture group and 70 in the patent foramen ovale group. The transseptal puncture group had a significantly higher mean procedure time (158.8 versus 131.4 minutes, p = 0.002), rate of fluoroscopy use (38% versus 7%, p < 0.001), and mean fluoroscopy time (2.4 versus 0.6 minutes, p < 0.001). The acute success and complication rates were similar. CONCLUSIONS: Performing transseptal puncture remains a common reason to utilise fluoroscopy in the era of non-fluoroscopic ablation. Better tools are needed to make non-fluoroscopic transseptal puncture more feasible.


Assuntos
Ablação por Cateter , Forame Oval Patente , Exposição à Radiação , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Punções/métodos , Ablação por Cateter/métodos
8.
Nature ; 609(7925): 174-182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002574

RESUMO

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.


Assuntos
Antígenos de Neoplasias , Neoplasias , Linfócitos T , Proteínas Ativadoras de ras GTPase , Animais , Antígenos de Neoplasias/imunologia , Medula Óssea , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Imunoterapia Adotiva , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genética
9.
Neuro Oncol ; 24(11): 1845-1856, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35788692

RESUMO

The wide variety of clinical manifestations of the genetic syndrome neurofibromatosis type 1 (NF1) are driven by overactivation of the RAS pathway. Mitogen-activated protein kinase kinase inhibitors (MEKi) block downstream targets of RAS. The recent regulatory approvals of the MEKi selumetinib for inoperable symptomatic plexiform neurofibromas in children with NF1 have made it the first medical therapy approved for this indication in the United States, the European Union, and elsewhere. Several recently published and ongoing clinical trials have demonstrated that MEKi may have potential benefits for a variety of other NF1 manifestations, and there is broad interest in the field regarding the appropriate clinical use of these agents. In this review, we present the current evidence regarding the use of existing MEKi for a variety of NF1-related manifestations, including tumor (neurofibromas, malignant peripheral nerve sheath tumors, low-grade glioma, and juvenile myelomonocytic leukemia) and non-tumor (bone, pain, and neurocognitive) manifestations. We discuss the potential utility of MEKi in related genetic conditions characterized by overactivation of the RAS pathway (RASopathies). In addition, we review practical treatment considerations for the use of MEKi as well as provide consensus recommendations regarding their clinical use from a panel of experts.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Neurofibroma Plexiforme , Neurofibromatose 1 , Inibidores de Proteínas Quinases , Criança , Humanos , Consenso , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neurofibroma Plexiforme/tratamento farmacológico , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/patologia , Inibidores de Proteínas Quinases/farmacologia
10.
Inflamm Bowel Dis ; 28(12): 1833-1837, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134899

RESUMO

BACKGROUND: Up to one-third of patients hospitalized for acute severe colitis secondary to inflammatory bowel diseases (IBD) do not adequately respond to intravenous steroids. There is an unmet need to identify a useful predictor for rescue treatment in this cohort of patients. AIMS: The aim of this study was to assess the predictive efficacy of fecal calprotectin in identifying the need for medical or surgical therapy in patients with acute severe colitis. METHODS: We conducted a multicenter retrospective cohort study including patients with ulcerative colitis (UC) who were hospitalized for severe exacerbation of colitis. The primary outcome was the need for in-hospital medical or surgical rescue therapy. Univariate and multivariate logistic regression was performed to identify predictors of rescue therapy. RESULTS: Our study included 147 patients with UC. One-third (33%) required rescue therapy, and 13% underwent colectomy. Patients requiring rescue therapy had significantly higher fecal calprotectin (mean 1748 mcg/g vs 1353 mcg/g, P = .02) compared with those who did not. A fecal calprotectin >800 mcg/g independently predicted the need for inpatient medical rescue therapy (odds ratio, 2.61; 95% CI, 1.12-6.12). An admission calprotectin >800 mcg/g independently predicted surgery within 3 months (odds ratio, 2.88; 95% CI, 1.01-8.17). CONCLUSIONS: Fecal calprotectin levels may serve as a useful noninvasive predictor of medical and surgical risk in individuals with UC presenting with acute severe colitis. This approach can facilitate earlier therapeutic interventions and improve outcomes.


Assuntos
Colite Ulcerativa , Complexo Antígeno L1 Leucocitário , Humanos , Estudos Retrospectivos , Colite Ulcerativa/tratamento farmacológico , Fezes , Colectomia , Biomarcadores , Índice de Gravidade de Doença
11.
J Cardiovasc Electrophysiol ; 33(1): 128-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716972

RESUMO

This series describes an innovative technique for pacing in patients with sinus node dysfunction after extracardiac Fontan surgery. This transpulmonary approach to the left atrial epi-myocardium has been successfully applied to three patients at two centers and resulted in excellent acute and midterm pacing characteristics without known complications. The principal advantage of this procedure in comparison to prior iterations is the absence of pacing material within the pulmonary venous atrium, so that future systemic thromboembolism risk is minimized. The transpulmonary approach for permanent atrial pacing offers a novel solution to the unique challenges for patients after extracardiac Fontan operation.


Assuntos
Técnica de Fontan , Cardiopatias Congênitas , Marca-Passo Artificial , Estimulação Cardíaca Artificial/métodos , Estudos de Viabilidade , Técnica de Fontan/efeitos adversos , Cardiopatias Congênitas/cirurgia , Humanos , Síndrome do Nó Sinusal/terapia
12.
Cardiol Young ; 32(10): 1580-1584, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34789361

RESUMO

BACKGROUND: Patients with CHD can be exposed to high levels of cumulative ionising radiation. Utilisation of electroanatomic mapping during catheter ablation leads to reduced radiation exposure in the general population but has not been well studied in patients with CHD. This study evaluated the radiation sparing benefit of using three-dimensional mapping in patients with CHD. METHODS: Data were retrospectively collected from the Catheter Ablation with Reduction or Elimination of Fluoroscopy multi-institutional registry. Patients with CHD were selected. Those with previous ablations, concurrent diagnostic or interventional catheterisation and unknown arrhythmogenic foci were excluded. The control cohort was matched for operating physician, arrhythmia mechanism, arrhythmia location, weight and age. The procedure time, rate of fluoroscopy use, fluoroscopy time, procedural success, complications, and distribution of procedures per year were compared between the two groups. RESULTS: Fifty-six patients with congenital heart disease and 56 matched patients without CHD were included. The mean total procedure time was significantly higher in patients with CHD (212.6 versus 169.5 minutes, p = 0.003). Their median total fluoroscopy time was 4.4 minutes (compared to 1.8 minutes), and their rate of fluoroscopy use was 23% (compared to 13%). The acute success and minor complication rates were similar and no major complications occurred. CONCLUSIONS: With the use of electroanatomic mapping during catheter ablation, fluoroscopy use can be reduced in patients with CHD. The majority of patients with CHD received zero fluoroscopy.


Assuntos
Ablação por Cateter , Exposição à Radiação , Humanos , Mapeamento Potencial de Superfície Corporal/métodos , Estudos Retrospectivos , Resultado do Tratamento , Exposição à Radiação/prevenção & controle , Fluoroscopia/métodos , Ablação por Cateter/métodos , Arritmias Cardíacas/epidemiologia
13.
Nat Chem Biol ; 17(8): 856-864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33927411

RESUMO

Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of NRAS-mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for NRAS-mutant cancers.


Assuntos
Membrana Celular/metabolismo , Hidrolases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Proteínas ras/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/patologia , Lipoilação , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular
14.
Cardiol Young ; 31(12): 1923-1928, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33766172

RESUMO

BACKGROUND: Catheter ablation is a safe and effective therapy for the treatment of supraventricular tachycardia in children. Current improvements in technology have allowed progressive reduction in radiation exposure associated with the procedure. To assess the impact of three-dimensional mapping, we compared acute procedural results collected from the Catheter Ablation with Reduction or Elimination of Fluoroscopy registry to published results from the Prospective Assessment after Pediatric Cardiac Ablation study. METHODS: Inclusion and exclusion criteria from the Prospective Assessment after Pediatric Cardiac Ablation study were used as guidelines to select patient data from the Catheter Ablation with Reduction or Elimination of Fluoroscopy registry to compare acute procedural outcomes between cohorts. Outcomes assessed include procedural and fluoroscopy exposure times, success rates of procedure, and complications. RESULTS: In 786 ablation procedures, targeting 498 accessory pathways and 288 atrioventricular nodal reentrant tachycardia substrates, average procedural time (156.5 versus 206.7 minutes, p < 0.01), and fluoroscopy time (1.2 versus 38.3 minutes, p < 0.01) were significantly shorter in the study group. Success rates for the various substrates were similar except for manifest accessory pathways which had a significantly higher success rate in the study group (96.4% versus 93.0%, p < 0.01). Major complication rates were significantly lower in the study group (0.3% versus 1.6%, p < 0.01). CONCLUSIONS: In a large, multicentre study, three-dimensional systems show favourable improvements in clinical outcomes in children undergoing catheter ablation of supraventricular tachycardia compared to the traditional fluoroscopic approach. Further improvements are anticipated as technology advances.


Assuntos
Ablação por Cateter , Taquicardia Supraventricular , Criança , Fluoroscopia , Humanos , Estudos Prospectivos , Taquicardia Supraventricular/cirurgia , Resultado do Tratamento
15.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32990679

RESUMO

Somatic KRAS mutations are highly prevalent in many cancers. In addition, a distinct spectrum of germline KRAS mutations causes developmental disorders called RASopathies. The mutant proteins encoded by these germline KRAS mutations are less biochemically and functionally activated than those in cancer. We generated mice harboring conditional KrasLSL-P34Rand KrasLSL-T58I knock-in alleles and characterized the consequences of each mutation in vivo. Embryonic expression of KrasT58I resulted in craniofacial abnormalities reminiscent of those seen in RASopathy disorders, and these mice exhibited hyperplastic growth of multiple organs, modest alterations in cardiac valvulogenesis, myocardial hypertrophy, and myeloproliferation. By contrast, embryonic KrasP34R expression resulted in early perinatal lethality from respiratory failure due to defective lung sacculation, which was associated with aberrant ERK activity in lung epithelial cells. Somatic Mx1-Cre-mediated activation in the hematopoietic compartment showed that KrasP34R and KrasT58I expression had distinct signaling effects, despite causing a similar spectrum of hematologic diseases. These potentially novel strains are robust models for investigating the consequences of expressing endogenous levels of hyperactive K-Ras in different developing and adult tissues, for comparing how oncogenic and germline K-Ras proteins perturb signaling networks and cell fate decisions, and for performing preclinical therapeutic trials.


Assuntos
Cardiomiopatias/patologia , Craniossinostoses/patologia , Doenças Hematológicas/patologia , Pneumopatias/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Craniossinostoses/etiologia , Craniossinostoses/metabolismo , Feminino , Doenças Hematológicas/etiologia , Doenças Hematológicas/metabolismo , Pneumopatias/etiologia , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
16.
Mol Cancer Ther ; 19(11): 2382-2395, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32847978

RESUMO

Loss of the tumor suppressor NF1 leads to activation of RAS effector pathways, which are therapeutically targeted by inhibition of mTOR (mTORi) or MEK (MEKi). However, therapeutic inhibition of RAS effectors leads to the development of drug resistance and ultimately disease progression. To investigate molecular signatures in the context of NF1 loss and subsequent acquired drug resistance, we analyzed the exomes, transcriptomes, and kinomes of Nf1-mutant mouse tumor cell lines and derivatives of these lines that acquired resistance to either MEKi or mTORi. Biochemical comparisons of this unique panel of tumor cells, all of which arose in Nf1+/- mice, indicate that loss of heterozygosity of Nf1 as an initial genetic event does not confer a common biochemical signature or response to kinase inhibition. Although acquired drug resistance by Nf1-mutant tumor cells was accompanied by altered kinomes and irreversibly altered transcriptomes, functionally in multiple Nf1-mutant tumor cell lines, MEKi resistance was a stable phenotype, in contrast to mTORi resistance, which was reversible. Collectively, these findings demonstrate that Nf1-mutant tumors represent a heterogeneous group biochemically and undergo broader remodeling of kinome activity and gene expression in response to targeted kinase inhibition.


Assuntos
Mutação , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromina 1/genética , Proteínas Quinases/metabolismo , Transcriptoma , Animais , Linhagem Celular Tumoral , Biologia Computacional , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Modelos Biológicos , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
17.
Heart Rhythm ; 17(10): 1752-1758, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32438019

RESUMO

BACKGROUND: Although they are at lower risk, patients with previous extracardiac conduit (EC) Fontan still may require catheter ablation for supraventricular arrhythmia. OBJECTIVE: The purpose of this study was to determine the optimal approach to pulmonary venous atrium (PVA) access after EC Fontan operation. METHODS: All electrophysiological procedures requiring PVA over a 10-year period at the UCLA Medical Center were reviewed. PVA was grouped by transcaval cardiac puncture (TCP) or direct conduit puncture. Procedural characteristics and outcomes were compared. RESULTS: Between June 2009 and November 2019, 23 electrophysiological procedures requiring PVA access were performed in 17 EC Fontan patients (53% male; median age 25 years; interquartile range 11-34). Cavoatrial overlap was identified in 14 patients by preprocedural imaging (10 cardiac computed tomography, 4 cardiac magnetic resonance). PVA access was obtained via TCP in 11, direct conduit puncture in 6, pre-existing fenestration in 5, and pulmonary artery puncture in 1. Time to PVA was significantly shorter for TCP vs direct conduit puncture (0.2 vs 1.1 hours, respectively; P = .03). The only predictor of successful TCP was the length of cavoatrial overlap by preprocedural imaging (14 vs 3 mm; P = .02). No procedural complications occurred. No change in oxygen saturation was noted, and no evidence of residual shunting was detected by follow-up echocardiography. CONCLUSION: TCP is feasible in most patients after EC Fontan surgery and can be predicted by preprocedural advanced imaging. TCP is associated with shorter time to PVA and was uncomplicated in this single-center study. Preoperative assessment of cavoatrial overlap should be considered before catheter ablation for EC Fontan.


Assuntos
Arritmias Cardíacas/cirurgia , Ablação por Cateter/métodos , Técnica de Fontan , Previsões , Cardiopatias Congênitas/cirurgia , Veias Pulmonares/cirurgia , Adolescente , Adulto , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Criança , Ecocardiografia , Feminino , Seguimentos , Átrios do Coração , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Humanos , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Veias Cavas , Adulto Jovem
18.
Heart Rhythm ; 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32243875

RESUMO

BACKGROUND: Congenitally corrected transposition of the great arteries (CCTGA) is associated with spontaneous atrioventricular block and pacing-induced cardiomyopathy. Conduction system pacing is a potential alternative to conventional cardiac resynchronization therapy (CRT). OBJECTIVE: The purpose of this study was to determine the outcomes of conduction system pacing for CCTGA. METHODS: Retrospective data were collected from 10 international centers. RESULTS: His bundle (HBP) or left bundle branch pacing (LBBP) was attempted in 15 CCTGA patients (median age 23 years; 87% male). Previous surgery had been performed in 8 and chronic ventricular pacing in 7. Conduction system pacing (11 HBP, 2 LBBP 2; nonselective in 10, selective in 3) was acutely successful in 13 (86%) without complication. In 9 cases, electroanatomic mapping was available and identified the distal His bundle and proximal left bundle branches within the morphologic left ventricle below the pulmonary valve separate from the mitral annulus. Median implant HV interval was 42 ms (interquartile range [IQR] 35-48), R wave 6 mV (IQR 5-18), and threshold 0.5 V (IQR 0.5-1.2) at median 0.5 ms. QRSd was unchanged compared to junctional escape rhythm (124 vs 110 ms; P = .17) and decreased significantly compared to baseline ventricular pacing (112 vs 164 ms; P <.01). At a median of 8 months, all patients were alive without significant change in pacing threshold or lead dysfunction. New York Heart Association functional class improved in 5 patients. CONCLUSION: Permanent conduction system pacing is feasible in CCTGA by either HBP or proximal LBBP. Narrow paced QRS and stable lead thresholds were observed at intermediate follow-up. Unique anatomic characteristics may favor this approach over conventional CRT.

19.
Blood ; 135(20): 1772-1782, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32219446

RESUMO

Oncogenic RAS mutations pose substantial challenges for rational drug discovery. Sequence variations within the hypervariable region of Ras isoforms underlie differential posttranslational modification and subcellular trafficking, potentially resulting in selective vulnerabilities. Specifically, inhibiting the palmitoylation/depalmitoylation cycle is an appealing strategy for treating NRAS mutant cancers, particularly as normal tissues would retain K-Ras4b function for physiologic signaling. The role of endogenous N-RasG12D palmitoylation in signal transduction, hematopoietic differentiation, and myeloid transformation is unknown, and addressing these key questions will inform efforts to develop mechanism-based therapies. To evaluate the palmitoylation/depalmitoylation cycle as a candidate drug target in an in vivo disease-relevant model system, we introduced a C181S mutation into a conditional NrasG12D "knock-in" allele. The C181S second-site amino acid substitution abrogated myeloid transformation by NrasG12D, which was associated with mislocalization of the nonpalmitoylated N-Ras mutant protein, reduced Raf/MEK/ERK signaling, and alterations in hematopoietic stem and progenitor populations. Furthermore, hematologic malignancies arising in NrasG12D/G12D,C181S compound heterozygous mice invariably acquired revertant mutations that restored cysteine 181. Together, these studies validate the palmitoylation cycle as a promising therapeutic target in NRAS mutant cancers.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Hematológicas/genética , Hematopoese/genética , Lipoilação/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Ácido Aspártico/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Glicina/genética , Neoplasias Hematológicas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Transgênicos , Ácido Palmítico/metabolismo
20.
Leukemia ; 34(8): 2025-2037, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32066867

RESUMO

Despite decades of clinical use, mechanisms of glucocorticoid resistance are poorly understood. We treated primary murine T lineage acute lymphoblastic leukemias (T-ALLs) with the glucocorticoid dexamethasone (DEX) alone and in combination with the pan-PI3 kinase inhibitor GDC-0941 and observed a robust response to DEX that was modestly enhanced by GDC-0941. Continuous in vivo treatment invariably resulted in outgrowth of drug-resistant clones, ~30% of which showed markedly reduced glucocorticoid receptor (GR) protein expression. A similar proportion of relapsed human T-ALLs also exhibited low GR protein levels. De novo or preexisting mutations in the gene encoding GR (Nr3c1) occurred in relapsed clones derived from multiple independent parental leukemias. CRISPR/Cas9 gene editing confirmed that loss of GR expression confers DEX resistance. Exposing drug-sensitive T-ALLs to DEX in vivo altered transcript levels of multiple genes, and this response was attenuated in relapsed T-ALLs. These data implicate reduced GR protein expression as a frequent cause of glucocorticoid resistance in T-ALL.


Assuntos
Dexametasona/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptores de Glucocorticoides/análise , Animais , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Humanos , Indazóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Glucocorticoides/genética , Recidiva , Sulfonamidas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA