Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(47): 13743-13754, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075666

RESUMO

Reversible cysteine modification has been found to be a useful tool for a plethora of applications such as selective enzymatic inhibition, activity-based protein profiling and/or cargo release from a protein or a material. However, only a limited number of reagents display reliable dynamic/reversible thiol modification and, in most cases, many of these reagents suffer from issues of stability, a lack of modularity and/or poor rate tunability. In this work, we demonstrate the potential of pyridazinediones as novel reversible and tuneable covalent cysteine modifiers. We show that the electrophilicity of pyridazinediones correlates to the rates of the Michael addition and retro-Michael deconjugation reactions, demonstrating that pyridazinediones provide an enticing platform for readily tuneable and reversible thiol addition/release. We explore the regioselectivity of the novel reaction and unveil the reason for the fundamental increased reactivity of aryl bearing pyridazinediones by using DFT calculations and corroborating findings with SCXRD. We also applied this fundamental discovery to making more rapid disulfide rebridging agents in related work. We finally provide the groundwork for potential applications in various areas with exemplification using readily functionalised "clickable" pyridazinediones on clinically relevant cysteine and disulfide conjugated proteins, as well as on a hydrogel material.

2.
Biomaterials ; 286: 121598, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660821

RESUMO

The combination therapy with different treatment modalities has been widely applied in the clinical applications of cancer treatment. However, it stills a considerable challenge to achieve co-delivery of different drugs because of distinct drug encapsulation mechanisms, low drug loading, and high excipient-related toxicity. Cancer stem cells (CSCs) are closely related to tumor metastasis and recurrence due to high chemoresistance. Herein, we report a stimuli-responsive and tumor-targeted small-molecule self-assembled nanodrug for the combination therapy against CSCs and normal cancer cells. The hydrophobic differentiation-inducing agent (all-trans retinoic acid, ATRA) and hydrophilic anticancer drug (irinotecan, IRI) constitute this amphiphilic nanodrug, which could self-assemble into stable nanoparticles and encapsulate the photothermal agent IR825. Upon cellular uptake, this nanodrug display good release profiles in response to acid and esterase microenvironments by ester linkage. The released drugs not only increase chemotherapy sensitivity by the differentiation of CSCs into non-CSCs, but also exhibit superior cytotoxicity in cancer cells. In addition, IR825 within this nanodrug enables in vivo fluorescence/photoacoustic (PA) imaging allowing for tracking drug distribution. Moreover, the DSPE-PEG-RGD-functionalized nanodrug displayed high tumor accumulation and good biocompatibility, enabling efficient inhibition of tumor growth and tumor metastasis in tumor-bearing mice.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Camundongos , Nanopartículas/química , Células-Tronco Neoplásicas , Tretinoína/uso terapêutico , Microambiente Tumoral
3.
Biomater Sci ; 10(3): 770-780, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34988569

RESUMO

Ferroptosis drugs often induce oxidative damage or block antioxidant defense due to the key mechanism of ferroptosis involved in cancer treatment, regulating the intracellular redox balance. However, these ferroptosis drugs are unstable during systemic circulation, and they lack tumor-targeting capability. Herein, we developed a stimuli-responsive and cell membrane-coated nanodrug for the simultaneous delivery of two ferroptosis drugs, an iron-chelating drug as a ROS inducer and sorafenib as an antioxidase inhibitor. The coating of the cancer cell membrane over the nanodrug can enhance the tumor-targeting capability and improve the stability in the blood circulation. In addition, the nanodrug exhibits sensitive drug release profiles in response to glutathione (GSH) and reactive oxygen species (ROS) in tumor microenvironments due to the dynamic diselenide bonds. The released iron-chelating drug and sorafenib not only produce hydroxyl radicals (˙OH) to induce ferroptosis, but also inhibit the expression of GPX4 to mitigate the ferroptosis resistance. Excitingly, the systemic administration of this biomimetic nanodrug displays superior antitumor and anti-metastatic effects in tumor-bearing mice. Our findings provide a promising therapeutic strategy for the co-delivery of ferroptosis inducers and antioxidase inhibitors to strengthen the therapeutic efficacy of ferroptosis.


Assuntos
Ferroptose , Neoplasias , Animais , Biomimética , Linhagem Celular Tumoral , Camundongos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio , Sorafenibe , Microambiente Tumoral
4.
Chem Sci ; 11(11): 3016-3021, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34122804

RESUMO

The spatiotemporal control over the structure of nanoparticles while monitoring their localization in tumor cells can improve the precision of controlled drug release, thus enhancing the efficiency of drug delivery. Here, we report on a photochromic nanoparticle system (LSNP), assembled from fluorescent bistable hydrazone photoswitch-modified amphiphilic copolymers. The intrinsic emission of the hydrazone switch allows for the visualization of particle uptake, as well as their intracellular distribution. The Z → E photoswitching of the hydrazone switch within the nanoparticle leads to the expansion of the nanoparticles (i.e., drug release) accompanied by emission quenching, the degree of which can function as an internal indicator for the amount of drug released. The bistability of the switch enables the kinetic trapping of particles of different sizes as a function of irradiation time, and allows for the exhibition of light-dependent cell cytotoxicity in MDA-MB-231 cells using LSNP loaded with doxorubicin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA