Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543095

RESUMO

This study aimed to explore the mechanisms through which salvianolic acid B (Sal-B) exerts its effects during myocardial ischemia-reperfusion injury (MI/RI), aiming to demonstrate the potential pharmacological characteristics of Sal-B in the management of coronary heart disease. First, Sal-B-related targets and MI/RI-related genes were compiled from public databases. Subsequent functional enrichment analyses using the protein-protein interaction (PPI) network, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted the core targets and approaches by which Sal-B counters MI/RI. Second, a Sal-B-treated MI/RI mouse model and oxygen-glucose deprivation/reoxygenation (OGD/R) H9C2 cell model were selected to verify the main targets of the network pharmacological prediction. An intersectional analysis between Sal-B and MI/RI targets identified 69 common targets, with a PPI network analysis highlighting caspase-3, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) as central targets. GO and KEGG enrichment analyses indicated remarkable enrichment of the apoptosis pathway among these targets, suggesting their utility in experimental studies in vivo. Experimental results demonstrated that Sal-B treatment not only mitigated myocardial infarction size following MI/RI injury in mice but also modulated the expression of key apoptotic regulators, including Bcl-2-Associated X (Bax), caspase-3, JNK, and p38, alongside enhancing the B-cell lymphoma-2 (Bcl-2) expression, thereby inhibiting myocardial tissue apoptosis. This study leveraged an integrative network pharmacology approach to predict Sal-B's potential targets in MI/RI treatment and verified the involvement of key target proteins within the predicted signaling pathways through both in vivo and in vitro experiments, offering a comprehensive insight into Sal-B's pharmacological mechanism in MI/RI management.

2.
J Agric Food Chem ; 71(48): 18986-18998, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997370

RESUMO

The growing demand for safe natural products has reignited people's interest in natural food pigments. Here, we proposed the use of macroporous adsorption resins (MARs) to separate and purify carthamin from safflower. The optimal parameters for carthamin purification with HPD400 MAR were determined as follows: a mass ratio of crude carthamin in sample solution to wet resin of 0.3, a crude carthamin solution concentration of 0.125 g·mL-1, a pH of 6.00, a sample volume flow rate of 0.5 mL·min-1, an ethanol volume fraction of 58%, an elution volume of 4 BV, and an elution volume flow rate of 1.0 mL·min-1. Under the above purification conditions, the recovery rate of carthamin was above 96%. Carthamin dramatically improved the survival rate of PC12 cells damaged by oxygen-glucose deprivation/reoxygenation and protected them from oxidative stress by inhibiting the generation of reactive oxygen species and increasing the total antioxidant capacity and glutathione (GSH) levels. Carthamin promoted extracellularly regulated protein kinase phosphorylation into the nucleus, permitting Nrf2 nuclear translocation and upregulating the gene expression of the rate-limiting enzymes glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase regulatory subunit of GSH synthesis to obliterate free radicals and exert antioxidant effects. This study revealed the purification method of carthamin and its antioxidant protective effects, providing important insights into the application of carthamin in functional foods.


Assuntos
Antioxidantes , Carthamus tinctorius , Humanos , Animais , Ratos , Células PC12 , Fator 2 Relacionado a NF-E2/genética , Glutamato-Cisteína Ligase , Adsorção , Transdução de Sinais
3.
Phytomedicine ; 119: 155002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572566

RESUMO

BACKGROUND: Inflammation is critical in the pathophysiology of atherosclerosis (AS). The aim of this study was to investigate the protective effect of salvianolic acid B (Sal B) on AS and to explore the molecular mechanism of tumor necrosis factor-α (TNF-α)-induced damage in human umbilical vein endothelial cells (HUVECs). METHODS: In vivo studies, LDLR-/- mice were fed a high-fat diet (HFD) for 14 weeks to establish an AS model to evaluate the protective effect of Sal B on the development of AS. Total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels were determined in the blood serum. En face and cross section lipid deposits were measured and quantified with Oil Red O staining. Hematoxylin and eosin (H&E) and Masson's trichrome staining were used to quantify atherosclerotic plaque size and collagen fiber content in aortic root sections. Reactive oxygen species (ROS) were detected in aortic root using dihydroethylenediamine (DHE) staining. Apoptosis rate was determined by TdT-mediated dUTP nick end labeling (TUNEL) staining. Immunofluorescence (IF) staining was used to detect the expression of the nuclear factor kappa-B (NF-κB) p65 and NOD-like receptor family pyrin domain containing 3 (NLRP3). To further investigate the protective effect of Sal B, we used TNF-α induced HUVECs inflammation model. We examined cell viability, lactate dehydrogenase (LDH) content, and ROS production. The transcription of NF-κB was evaluated by immunofluorescence. The mRNA levels of NLRP3, caspase-1, and IL-1ß were detected by RT-PCR. Pyroptosis related proteins were detected by Western blot. RESULTS: The change in the weight of the mice over time was an indication that Sal B had an effect on weight gain. IN VIVO STUDIES: we were able to show that the serum lipids TC, TG and LDL-C were increased in the model group and that the treatment with Sal B reduced the levels of serum lipids. Histological staining showed that the LDLR-/- mice had a large amount of foam cell deposition accompanied by inflammatory cell infiltration and the formation of atherosclerotic plaques in theMOD group. The pathological abnormalities were significantly improved by Sal B treatment. ROS release and apoptosis were significantly increased after HFD in aortic root, which was attenuated by Sal B. IF results showed that the expression of NF-κB p65 and NLRP3 was significantly increased in the MOD group and significantly decreased in the Sal B group, suggesting that Sal B may act through the NF-κB/NLRP3 pathway. And in vitro studies: inflammatory damage of HUEVCs was induced by TNF-α, and Sal B treatmented significantly increased cell viability and reduced LDH release. It was also found that Sal B inhibited ROS level increase after TNF-α-induced HUEVCs. Activation of NF-κB p65 by TNF-α stimulation, NF-κB p65 is transferred to the nucleus. Sal B treatment could reverse this effect. RT-PCR and Western blot showed that Sal B affected NF-κB transcription and NLRP3 inflammasome activation and could significantly inhibit TNF-α-induced NLRP3 inflammasome activation. These results suggest that Sal B may participate in antiatherosclerotic and inflammatory responses through the NF-κB/NLRP3 pathway. CONCLUSIONS: This study shows that Sal B ameliorates the development of AS lesions in HFD-induced LDLR-/- mice. Furthermore, under TNF-α conditions, Sal B reduced ROS release and reversed nuclear translocation of NF-κB, and inhibited atherosclerosis and inflammation by modulating the NF-κB/NLRP3 pathway.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , LDL-Colesterol , Transdução de Sinais , Inflamação/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico
4.
Biomed Pharmacother ; 157: 114075, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481401

RESUMO

Cerebral ischemia threatens human health and life. Hyperlipidemia is a risk of cerebral ischemia. Danhong injection (DHI) is a traditional Chinese medical preparation for the treatment of cerebrovascular diseases. However, the effects of DHI on mitochondria-dependent apoptosis and mitochondrial function following cerebral ischemia in hyperlipidemia rats are not clear. In this study, SD rats were fed by high-fat diet for six weeks to establish the hyperlipidemia model, except for the sham and ischemia-reperfusion (I/R) groups. Hyperlipidemia rats were assigned into I/R + high-fat diet (HFD) group, DHI 1 mL/kg group, and DHI 2 mL/kg group. DHI was administrated to the drug group via caudal vein for seven consecutive days (once per day). Subsequently, rats underwent middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h. The results showed that DHI significantly reduced cerebral infarction volume, ameliorated neurological function, improved pathological changes, and inhibited apoptosis. DHI could significantly restore the levels of mitochondrial respiratory chain complexes I-IV, increase the ATP content and COX activity, and decrease the level of OFR in the ischemic brain mitochondria of hyperlipidemia rats after I/R. DHI significantly regulated the levels of cytochrome c (Cyt c), Apaf1, Bax, Bcl-2, Caspase-3, and Caspase-9 in brain tissue, and improved mitochondrial dynamics (Mfn1, Mfn2, OPA1, Drp1, and Fis1). The results indicate that DHI could alleviate ischemic brain injury in hyperlipidemia rats, and the mechanism may be to improve mitochondrial function by restoring the mitochondrial respiratory chain and changing the protein balance of mitochondrial fusion and fission, and inhibiting mitochondria-dependent apoptosis.


Assuntos
Isquemia Encefálica , Hiperlipidemias , Traumatismo por Reperfusão , Humanos , Animais , Ratos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Mitocôndrias , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Apoptose
5.
Phytomedicine ; 104: 154320, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35830758

RESUMO

BACKGROUND: After thrombosis, t-PA thrombolysis is the first choice, but the use of t-PA can easily lead to hemorrhagic injury and neurotoxicity. The combination of Danhong injection (DHI) and tissue plasminogen activator (t-PA) therapy may be a new strategy to find high-efficiency anti-thrombosis and low bleeding risk. However, nothing is about the effect of DHI plus t-PA on platelet activation. PURPOSE: The present research was to explore the optimal dose of DHI and t-PA in vivo and mechanisms involved with the treatment of combining DHI and t-PA for thrombotic disease and determined whether DHI plus t-PA affects thrombotic processes related to platelet activation. METHODS: Mice were induced by administering κ-carrageenan intraperitoneally, the ratio of different doses of DHI and t-PA in vivo, and the optimal dose effects on platelet aggregation, platelet adhesion, thrombosis formation, and platelet activation were determined. The effects of the αIIbß3 signaling pathway were analyzed in mice. RESULTS: In vitro, DHI (62% v/v), t-PA (1 mg/ml), and DHI + t-PA (62% v/v + 1 mg/ml) decreased rat platelet aggregation and adhesion, with a stronger effect from the combination as compared to t-PA monotherapy. In vivo, injections of κ-carrageenan were used to induce BALB/c mice. The optimal dose of DHI, t-PA, and DHI + t-PA is 12 ml/kg, 10 mg/kg, and 12 ml/kg + 7.5 mg/kg. The administration of DHI (12 ml/kg), t-PA (10 mg/kg), and DHI + t-PA (12 ml/kg + 7.5 mg/kg) decreased thrombi in mouse tissue vessels. Furthermore, the reduction of thrombosis formation by DHI, t-PA, and DHI + t-PA was related to lower collagen deposition, and lowered expressions of collagen I, matrix metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9) in mouse tails, with increased efficacy in combination as compared to t-PA alone. The anti-thrombosis actions of DHI, t-PA, and their combination regulated the expression of CD41, purinergic receptor (P2Y12), guanine nucleotide-binding protein G (q) subunit alpha (GNAQ), phosphatidylinositol phospholipase c beta (PLCß), Ras-related protein 1 (Rap1), RIAM, talin1, fibrinogen alpha chain (FG), kindlin-3, and RAS guany1-releasing protein 1 (RasGRP1). CONCLUSIONS: Based on expression, the mechanism responsible for thrombosis may be attributed to platelet activation via the αIIbß3 signaling pathway. Combination therapy with DHI and t-PA exerted potent thrombolytic effects. Thus, our data can be used as a foundation for further clinical studies examining the efficacy of traditional Chinese medicines for the treatment of thrombosis.


Assuntos
Trombose , Ativador de Plasminogênio Tecidual , Animais , Carragenina , Proteínas do Citoesqueleto/uso terapêutico , Medicamentos de Ervas Chinesas , Fatores de Troca do Nucleotídeo Guanina/uso terapêutico , Metaloproteinase 2 da Matriz , Camundongos , Ratos , Cauda/metabolismo , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/uso terapêutico
6.
Biomed Pharmacother ; 142: 112048, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34435588

RESUMO

Mannitol, a representative of hyperosmolar therapy, is indispensable for the treatment of malignant cerebral infarction, but its therapeutic effect is limited by its exacerbation of blood-brain barrier (BBB) disruption. This study was to explore whether Danhong injection (DHI), a standardized product extracted from Salvia miltiorrhiza Bunge and Carthamus tinctorius L., inhibits the destructive effect of mannitol on BBB and thus enhancing the treatment of hemispheric ischemic stroke. SD rats were subjected to pMCAO followed by intravenous bolus injections of mannitol with/without DHI intervention. Neurological deficit score, brain edema, infarct volume at 24 h after MCAO and histopathology, microvascular ultrastructure, immunohistochemistry and immunofluorescence staining of endothelial cell junctions, energy metabolism in the ischemic penumbra were assessed. Intravenous mannitol after MCAO resulted in a decrease in 24 h mortality and cerebral edema, whereas no significant benefit on neurological deficits, infarct volume and microvascular ultrastructure. Moreover, mannitol led to the loss of endothelial integrity, manifested by the decreased expression of occludin, junctional adhesion molecule-1 (JAM-1) and zonula occluden-1 (ZO-1) and the discontinuity of occludin staining around the periphery of endothelial cells. Meanwhile, after mannitol treatment, energy-dependent vimentin and F-actin, ATP content, and ATP5D expression were down-regulated, while MMP2 and MMP9 expression increased in the ischemic penumbra. All the insults after mannitol treatment were attenuated by addition of intravenous DHI. The results suggest DHI as a potential remedy to attenuate mannitol-related BBB disruption, and the potential of DHI to upregulate energy metabolism and inhibit the activity of MMPs is likely attributable to its effects observed.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/tratamento farmacológico , Manitol/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Edema Encefálico/tratamento farmacológico , Isquemia Encefálica/patologia , Citoesqueleto/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Células Endoteliais/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Injeções , Junções Intercelulares/efeitos dos fármacos , AVC Isquêmico/patologia , Manitol/uso terapêutico , Metaloproteinases da Matriz/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Microvasos/ultraestrutura , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Ratos Sprague-Dawley , Taxa de Sobrevida
7.
Biomed Pharmacother ; 140: 111771, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058441

RESUMO

Danhong injection (DHI) is a compound Chinese medicine widely used in China for treatment of ischemic cardio-cerebrovascular diseases. However, limited data are available regarding the protective effect of DHI on the ischemic penumbra in ischemic stroke. This study aimed to investigate the effect of intravenous DHI on neuronal injure in the ischemic penumbra after cerebral ischemia/reperfusion (CI/R), focusing especially on the involvement of intracellular energy metabolism coupling. Male Sprague-Dawley rats were subjected to right middle cerebral artery occlusion for 60 min followed by reperfusion with or without intravenous DHI (0.5, 1.0, or 2.0 mL/kg) once daily for 7 days. Post-treatment with DHI ameliorated neurological defects, diminished cerebral infarction, alleviated cerebral edema, improved microcirculatory perfusion after 7days of reperfusion, and inhibited apoptosis and enhanced neuronal survival in the ischemic penumbra. In addition, DHI significantly ameliorated oxidative stress, reduced DNA damage, and inhibited the activation of PARP1/AIF pathway, thereby restoring cytoplasmic glycolytic activity. Furthermore, this drug increased PDH activity by inhibiting the HIF1α/PDK1 signaling pathway, thus eliminating the inhibitory effect of CI/R on mitochondrial metabolism. The results of this study suggest that DHI can alleviate cerebral edema after CI/R and rescue the ischemic penumbra, and these protective effects are due to the regulation of intracellular energy metabolic coupling.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Dano ao DNA , Medicamentos de Ervas Chinesas/farmacologia , Edema/tratamento farmacológico , Edema/metabolismo , Edema/patologia , Metabolismo Energético/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Cetona Oxirredutases/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Ratos Sprague-Dawley
8.
Front Pharmacol ; 12: 650983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054531

RESUMO

Guhong injection (GHI) can be used for the treatment of ischemic stroke. We investigated the antiapoptotic activity of GHI, its ability to repair the cerebral microvessels and mitochondria, and the PI3K/AKT signaling pathway of GHI against cerebral ischemia. Western blot and immunohistochemical analyses were used to determine the expression of cleaved caspase-3, B-cell lymphoma-2 (Bcl-2), cytochrome c (Cyt-c), basic fibroblast growth factor (BFGF), vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1), and proteins in the PI3K/AKT signaling pathway. Transmission electron microscopy and scanning electron microscopy were used to evaluate the structures of the cerebral microvasculature and cells. Hoechst 33342 staining was used to evaluate the nuclear morphology. FITC-AV/PI double staining was used to measure the antiapoptotic effects. The fluorescent dye JC-1 was used to measure mitochondrial membrane potential. The enzyme-linked immunosorbent assay (ELISA) was used to detect the activities of matrix metalloproteinase-9 (MMP-9). Biochemical assay kits were used to detect the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA). Compared with the middle cerebral artery occlusion (MCAO) group, there was decreased infarct volume and significantly improved neurological deficits in the GHI group. In addition, the expression of Bcl-2 was significantly upregulated, while the expression of Cyt-c, Bax, and cleaved caspase-3 was notably downregulated. GHI administration attenuated the pathological change and morphology of the cerebral microvasculature, and immunohistochemical staining indicated that the expressions of BFGF, VEGF, and TGF-ß1 were significantly increased. The cell morphology, cell viability, cell nuclei characteristics, and mitochondrial morphology normalized following GHI treatment, which decreased the release of Cyt-c and the mitochondrial membrane potential. The levels of LDH, MMP-9, and MDA decreased, while SOD increased. Moreover, GHI administration inhibited the activation of the PI3K/AKT signaling pathway in rat brain microvascular endothelial cells (rBMECs) following oxygen/glucose deprivation (OGD) injury. Therefore, our results show that GHI administration resulted in antiapoptosis of cerebral cells and repair of cerebral microvessels and mitochondria via the PI3K/AKT signaling pathway.

9.
J Ethnopharmacol ; 277: 114232, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044078

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The internal capsule is vulnerable to ischemia, and mild ischemic stroke often results in lesion of the internal capsule, manifested as contralateral hemiplegia. Protocatechudehyde (PCA), a potential neuroprotective agent, has shown therapeutic effects in the study of a variety of nervous system diseases, including ischemic stroke. AIM OF THE STUDY: The aim of this study was to evaluate the effects of PCA on cerebral ischemia reperfusion (CI/R)-elicited internal capsule injury and to elucidate the role of mitochondrial energy metabolism in the underlying mechanism of neuroprotective effects on ischemic stroke. MATERIALS AND METHODS: A rat tMCAO model was established to investigate the therapeutic effects of intravenous PCA (20, 40, and 80 mg/kg, once per day, continued for 7 days) on CI/R-induced internal capsule injury and the regulation of PCA on molecules related to mitochondrial energy metabolism. In vitro, an OGD/R model of PC12 cells was established to further verify the therapeutic mechanism of PCA. RESULTS: Results showed that PCA dose-dependently attenuated neurological deficit, reduced cerebral infarction, alleviated histopathological damage, and improved mitochondrial ultrastructure of the internal capsule after CI/R. Moreover, PCA reversed the upregulation of HIF1α, PDK1 and pPDHA1 expression induced by CI/R and significantly increased the content of acetyl-CoA, ATP, and the activity of ATP synthase. In vitro, PCA treatment promoted cell survival, inhibited apoptosis, attenuated the dissipation of mitochondrial membrane potential in OGD/R-treated PC12 cells, and these therapeutic effects were reversed by the combination of cobalt chloride (CoCl2), a specific pharmacological inducer of HIF1a expression. CONCLUSIONS: These results indicate that PCA exerts a protective effect against CI/R-induced internal capsule injury and improves mitochondrial energy metabolism in the internal capsule, and the mechanism is associated with the inhibition of HIF1α/PDK1 signaling pathway.


Assuntos
Benzaldeídos/farmacologia , Catecóis/farmacologia , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzaldeídos/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Catecóis/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cápsula Interna/efeitos dos fármacos , Cápsula Interna/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Células PC12 , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
10.
Biomed Pharmacother ; 138: 111451, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33714107

RESUMO

Traditional Chinese Medicine formulas, which are usually considered exerting their holistic clinical benefits via multi-component, multi-target manner, are unique resources for the discovery of multi-component drug combinations. In order to screen and optimize the functional compound combination (FCC) from TCM, we established a novel four-step 'GCIC' strategy, including 'Global profiling', 'Chemical structural classification', 'Intra-group screening' and 'Component-knockout optimization'. Following this strategy, an FCC consisted of four components from Danhong Injection (DHI) was identified, containing ferulic acid, cryptotanshinone, quercetin and anhydrosafflor yellow B. The holistic neuroprotective effects of the FCC were further investigated, indicating that the combination can both activate the antioxidative and anti-inflammatory responses in PC12 cells to protect them from oxidative stress. Major signaling pathways as Nrf2/ARE and Nrf2/AMPK/GSK3ß were involved in the protective process of FCC. The 'GCIC' strategy established in this study might provide an alternation to traditional strategies in discovering the bioactive components from herbal medicines, especially compounded TCM formulas.


Assuntos
Descoberta de Drogas/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicina Tradicional Chinesa/métodos , Fármacos Neuroprotetores/administração & dosagem , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células PC12 , Ratos
11.
Neurosci Bull ; 36(6): 639-648, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32303914

RESUMO

Increasing evidence suggests that a cyclic adenosine monophosphate (cAMP)-dependent intracellular signal drives the process of myelination. Yet, the signal transduction underlying the action of cAMP on central nervous system myelination remains undefined. In the present work, we sought to determine the role of EPAC (exchange protein activated by cAMP), a downstream effector of cAMP, in the development of the myelin sheath using EPAC1 and EPAC2 double-knockout (EPACdKO) mice. The results showed an age-dependent regulatory effect of EPAC1 and EPAC2 on myelin development, as their deficiency caused more myelin sheaths in postnatal early but not late adult mice. Knockout of EPAC promoted the proliferation of oligodendrocyte precursor cells and had diverse effects on myelin-related transcription factors, which in turn increased the expression of myelin-related proteins. These results indicate that EPAC proteins are negative regulators of myelination and may be promising targets for the treatment of myelin-related diseases.


Assuntos
Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina , Células Precursoras de Oligodendrócitos , Animais , AMP Cíclico , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Camundongos , Camundongos Knockout , Bainha de Mielina , Células Precursoras de Oligodendrócitos/citologia
12.
Front Mol Neurosci ; 11: 231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034322

RESUMO

Leucine-rich glioma inactivated 1 (Lgi1), a putative tumor suppressor, is tightly associated with autosomal dominant lateral temporal lobe epilepsy (ADLTE). It has been shown that Lgi1 regulates the myelination of Schwann cells in the peripheral nervous system (PNS). However, the function and underlying mechanisms for Lgi1 regulation of oligodendrocyte differentiation and myelination in the central nervous system (CNS) remain elusive. In addition, whether Lgi1 is required for myelin maintenance is unknown. Here, we show that Lgi1 is necessary and sufficient for the differentiation of oligodendrocyte precursor cells and is also required for the maintenance of myelinated fibers. The hypomyelination in Lgi1-/- mice attributes to the inhibition of the biosynthesis of lipids and proteins in oligodendrocytes (OLs). Moreover, we found that Lgi1 deficiency leads to a decrease in expression of tuberous sclerosis complex 1 (TSC1) and activates mammalian target of rapamycin signaling. Together, the present work establishes that Lgi1 is a regulator of oligodendrocyte development and myelination in CNS.

13.
J Neurosci ; 38(13): 3346-3357, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491011

RESUMO

Autosomal dominant lateral temporal epilepsy (ADLTE) is an inherited syndrome caused by mutations in the leucine-rich glioma inactivated 1 (LGI1) gene. It is known that glutamatergic transmission is altered in LGI1 mutant mice, and seizures can be reduced by restoring LGI1 function. Yet, the mechanism underlying ADLTE is unclear. Here, we propose that seizures in male LGI1-/- mice are due to nonsynaptic epileptiform activity in cortical neurons. We examined the intrinsic excitability of pyramidal neurons in the temporal cortex of male LGI1-/- mice and found that the voltage-gated K+ channel Kv1.2 was significantly downregulated. We also found that cytosolic phospholipase A2 (cPLA2)-cyclooxygenase 2 (Cox2) signaling was enhanced in LGI1-/- mice. Interestingly, Cox2 inhibition effectively restored the dysregulated Kv1.2 and reduced the intrinsic excitability of pyramidal neurons. Moreover, in vivo injection of celecoxib, an FDA-approved nonsteroidal anti-inflammatory drug, rescued the defective Kv1.2 (an ∼1.9-fold increase), thereby alleviating the seizure susceptibility and extending the life of LGI1-/- mice by 5 d. In summary, we conclude that LGI1 deficiency dysregulates cPLA2-Cox2 signaling to cause hyperexcitability of cortical pyramidal neurons, and celecoxib is a potential agent to manage human ADLTE.SIGNIFICANCE STATEMENT Haploinsufficiency of the leucine-rich glioma inactivated 1 (LGI1) gene is the major pathogenic basis for ADLTE, an inherited syndrome with no cure to date. Existing studies suggest that altered glutamatergic transmission in the hippocampus causes this disease, but the data are paradoxical. We demonstrate that the loss of LGI1 decreases Kv1.2 expression, enhances intrinsic excitability, and thereby causes epilepsy. Interestingly, for the first time, we show that an FDA-approved drug, celecoxib, rescues the Kv1.2 defect and alleviates seizure susceptibility in LGI1-/- mice, as well as improving their survival. Thus, we suggest that celecoxib is a promising drug for the treatment of ADLTE patients.


Assuntos
Anticonvulsivantes/uso terapêutico , Celecoxib/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Convulsões/tratamento farmacológico , Potenciais de Ação , Animais , Anticonvulsivantes/farmacologia , Celecoxib/farmacologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Epilepsia do Lobo Temporal/genética , Peptídeos e Proteínas de Sinalização Intracelular , Canal de Potássio Kv1.2/metabolismo , Masculino , Camundongos , Fosfolipases A2/metabolismo , Proteínas/genética , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Convulsões/genética
14.
Glia ; 61(12): 1959-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24108520

RESUMO

Excessive extracellular glutamate leads to neuronal death in central nervous system. Excitatory glutamate transporter subtype 2 (GLT-1) carries bulk of glutamate reuptake in cerebral ischemia. Although GLT-1 expression fluctuates during the period of ischemia, little is known about its regulatory mechanism. Here we show an up-regulation of GLT-1 via mammalian target of rapamycin (mTOR)-Akt-nuclear factor-кB (NF-кB) signaling cascade in oxygen glucose deprivation (OGD). We found that brief rapamycin treatment significantly increased GLT-1 expression in cultured astrocytes. Rapamycin increased phosphorylation of raptor at Ser792 and decreased phosphorylation of rictor at Thr1135, suggesting that both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) are involved in GLT-1 expression. This conclusion was further confirmed by raptor and rictor disruption experiments. Akt was activated by mTORC1 inhibition and required for GLT-1 expression because triciribine, a specific inhibitor of Akt, blocked the increase of GLT-1 expression. mTOR-Akt cascade then activated NF-кB and increased кB-motif-binding phosphoprotein (KBBP) expression and GLT-1 transcription. We next demonstrated that mTOR-Akt-NF-кB cascade was activated in OGD and subsequently caused the upregulation of GLT-1. Supporting evidence included: (1) inhibition of Akt or NF-кB occluded OGD-induced GLT-1 upregulation; (2) Raptor knock-down plus OGD did not add to the increase of GLT-1 expression; (3) Intact mTORC2 was required for GLT-1 enhancement. In summary, our data first showed that mTOR-Akt-NF-кB cascade played critical roles to up-regulate GLT-1 in OGD. This signaling cascade may work to promote glutamate uptake in brain ischemia and neurodegenerative diseases.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Animais , Astrócitos/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/genética , Hipóxia/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirolimo/farmacologia
15.
Traffic ; 14(7): 785-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23551859

RESUMO

Neurons critically depend on the long-distance transport of mitochondria. Motor proteins kinesin and dynein control anterograde and retrograde mitochondrial transport, respectively in axons. The regulatory molecules that link them to mitochondria need to be better characterized. Nuclear distribution (Nud) family proteins LIS1, Ndel1 and NudCL are critical components of cytoplasmic dynein complex. Roles of these Nud proteins in neuronal mitochondrial transport are unknown. Here we report distinct functions of LIS1, Ndel1 and NudCL on axonal mitochondrial transport in cultured hippocampal neurons. We found that LIS1 interacted with kinsein family protein KIF5b. Depletion of LIS1 enormously suppressed mitochondrial motility in both anterograde and retrograde directions. Inhibition of either Ndel1 or NudCL only partially reduced retrograde mitochondrial motility. However, knocking down both Ndel1 and NudCL almost blocked retrograde mitochondrial transport, suggesting these proteins may work together to regulate retrograde mitochondrial transport through linking dynein-LIS1 complex. Taken together, our results uncover novel roles of LIS1, Ndel1 and NudCL in the transport of mitochondria in axons.


Assuntos
Transporte Axonal , Proteínas de Transporte/metabolismo , Cisteína Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Axônios/metabolismo , Proteínas de Transporte/genética , Cisteína Endopeptidases/genética , Deleção de Genes , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA