Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(11): 3452-3466, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38497815

RESUMO

The 2-(2-phenethyl)chromones (PECs) are the signature constituents responsible for the fragrance and pharmacological properties of agarwood. O-Methyltransferases (OMTs) are necessary for the biosynthesis of methylated PECs, but there is little known about OMTs in Aquilaria sinensis. In this study, we identified 29 OMT genes from the A. sinensis genome. Expression analysis showed they were differentially expressed in different tissues and responded to drill wounding. Comprehensive analysis of the gene expression and methylated PEC content revealed that AsOMT2, AsOMT8, AsOMT11, AsOMT16, and AsOMT28 could potentially be involved in methylated PECs biosynthesis. In vitro enzyme assays and functional analysis in Nicotiana benthamiana demonstrated that AsOMT11 and AsOMT16 could methylate 6-hydroxy-2-(2-phenylethyl)chromone to form 6-methoxy-2-(2-phenylethyl)chromone. A transient overexpression experiment in the variety 'Qi-Nan' revealed that AsOMT11 and AsOMT16 could significantly promote the accumulation of three major methylated PECs. Our results provide candidate genes for the mass production of methylated PECs using synthetic biology.


Assuntos
Metiltransferases , Proteínas de Plantas , Thymelaeaceae , Thymelaeaceae/genética , Thymelaeaceae/metabolismo , Thymelaeaceae/enzimologia , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cromonas/metabolismo , Madeira/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Metilação , Regulação da Expressão Gênica de Plantas , Flavonoides
2.
Curr Pharm Biotechnol ; 22(3): 360-366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32564747

RESUMO

BACKGROUND: Taxus is a valuable woody species with important medicinal value. The bark of Taxus can produce taxol, a natural antineoplastic drug that is widely used in the treatment of breast, ovarian and lung cancers. However, the low content of taxol in the bark of Taxus can not meet the growing clinical demands, so the current research aims at finding ways to increase taxol production. OBJECTIVE: In this review, the research progress of taxol including the factors affecting the taxol content, biosynthesis pathway of taxol, production of taxol in vitro and the application of multi-omics approaches in Taxus as well as future research prospects will be discussed. RESULTS: The taxol content is not only dependent on the species, age and tissues but is also affected by light, moisture levels, temperature, soil fertility and microbes. Most of the enzymes in the taxol biosynthesis pathway have been identified and characterized. Total chemical synthesis, semi-synthesis, plant cell culture and biosynthesis in endophytic fungi have been explored to product taxol. Multi-omics have been used to study Taxus and taxol. CONCLUSION: Further efforts in the identification of unknown enzymes in the taxol biosynthesis pathway, establishment of the genetic transformation system in Taxus and the regulatory mechanism of taxol biosynthesis and Taxus cell growth will play a significant role in improving the yield of taxol in Taxus cells and plants.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Pesquisa Biomédica/tendências , Paclitaxel/biossíntese , Taxus , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Paclitaxel/química , Paclitaxel/uso terapêutico , Taxus/microbiologia
3.
Sci Rep ; 7: 44622, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304398

RESUMO

Salvia miltiorrhiza is a well-known material of traditional Chinese medicine. Understanding the regulatory mechanisms of phenolic acid biosynthesis and metabolism are important for S. miltiorrhiza quality improvement. We report here that S. miltiorrhiza contains 19 polyphenol oxidases (PPOs), forming the largest PPO gene family in plant species to our knowledge. Analysis of gene structures and sequence features revealed the conservation and divergence of SmPPOs. SmPPOs were differentially expressed in plant tissues and eight of them were predominantly expressed in phloem and xylem, indicating that some SmPPOs are functionally redundant, whereas the others are associated with different physiological processes. Expression patterns of eighteen SmPPOs were significantly altered under MeJA treatment, and twelve were yeast extract and Ag+-responsive, suggesting the majority of SmPPOs are stress-responsive. Analysis of high-throughput small RNA sequences and degradome data showed that miR1444-mediated regulation of PPOs existing in P. trichocarpa is absent from S. miltiorrhiza. Instead, a subset of SmPPOs was posttranscriptionally regulated by a novel miRNA, termed Smi-miR12112. It indicates the specificity and significance of miRNA-mediated regulation of PPOs. The results shed light on the regulation of SmPPO expression and suggest the complexity of SmPPO-associated phenolic acid biosynthesis and metabolism.


Assuntos
Catecol Oxidase/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Família Multigênica , Salvia miltiorrhiza/enzimologia , Salvia miltiorrhiza/genética , Transcrição Gênica , Acetatos/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Clonagem Molecular , Sequência Conservada/genética , Ciclopentanos/farmacologia , Éxons/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Variação Genética , Íntrons/genética , MicroRNAs/metabolismo , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Salvia miltiorrhiza/efeitos dos fármacos , Especificidade da Espécie , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA